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Preflce

The road to the end was a bit tortuous. I set out to

compare the rate of convergence to solution of five or six

iterative methods of solving the implicit finite difference

representation of the equation of transient heat transfer,

to do an analysis on the effect on the rate of convergence

of a spiral grid scan, and a detailed error analysis. Tj'o-

ward the last third of the allotted time, the relationship

between the adapted Wegstein technique and successive over-

relaxation appeared and the decision was made to follow this

line of investigation. To this end, this relationship be-

tween the two methods is now rather obvious, though, in my

earlier work on this thesis it was not at all obvious to me.

Time did not permit a thorough investigation designed to use

this relationship for possible improvement of the adapted

Wegstein technique.

I vish to express my appreciation to Dr. Bernard Kaplan

of the Physics Department of the Air Force Institute of

Technology for his assistance and guidance. Most of all, my

gratitude (and more) goes to my wife who still Insists that

having me constantly off in my litter-strewn corner ot the

house Is better than having me away on temporary duty some-

where.

Robert A: Poppe

ii
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A~bstract

This study investiek.te tane practical application of

two converence tecnriques designed to increase the rate

of convergence of the method of successive dispi..cemer.ts

(;auss--iedel) for the impiiet numericel souU.ion3 of the

diffusion euation of transient aeat transfer. A sample

croblem of determining tae temperttuve distrilutti'n in a

cube with a coneatnt internal neut source and fixed boundu-

ry temperatures Is solved to provide the necessary date.

The results provide a tteoreticEl basis ror the aapted

.vewtein tecar.inue that was not previously avaiticle. ALs

tneoretioal basis brings to lient the fact that successive

overrelaxation and the adaptea .e stein technique ere cased

on the same theoretical oacxArcund.

procedure based on estimatinE the maximum eienvalue

of tne metnod of successive displacements is used to make

an approximation of the relaxation factor for successive

overrelaxation. 'lis procedure is shown to be a practical

metnod of finln " the proper relaxation factor to estikate

the difficult-to-determine optimum factor. The savings

usine tnis procedure was about 5o of the iterations re-

quired to obtain we same solution by successive displace-

ments.

A comparison of the two accelerating techniques is

made. Items of comparison are: the number of Iterations

viii.
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required to obtain a solution of the sample problem, the

progress of the solution with increasing iterations, the

characteristics of the accelerating factor determined while

computing In the normal successive displacements mode, and

the error associated with the solution of the sample problem.

i'he principal results of this comparison are:

1. A 65, reduction in iterations over successive

displacements when the optimum relaxation factor is used

and about 50 and 307. reductions for successiver overrelax-

ation with an estimated relaxation factor and the adapted

gegstein technique, respectively.

2. Lucoessive overrelaxation produces a smooth

convergence to solution, whereas, the adapted megstein tech-

nique is ragged.

3. Both the single maxinum slgenvalue used to

compute the relaxation factor of the method of successive

overrelaxatlon and the Regetein slopes used to compute an

accelerating factor for each Individual node converge to the

same value, but at different rates.

4. The error associated with the accelerated

solutions is less than that encountered in the method of

successive displacements.

An additional investigation is made of the effects on

ix



Abstrfct

tte rate of convergence of successive displacements of

scanning the finite difference grid in a sriral mode from

tae fixea boundary conditions. lae rate of convergence is

compared to tnat obtained using a conventional serial scan-

ning procedure. The results obtained snow a small decrease

in the number of iterations required for the spiral mode

over the serial scan, but tne savings are not significant.

A tenta ive conclusion is reached that no change in scan-

ning procedure from serial scan will produce u sijnificant

decrease in the iterations required to solve the transient

heat transfer problem by successive displacements.

x
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I. Introduction

Backaround

The analytical solution to partial differential equa-

tions of engineering and applied physics can not in general

be obtained except in very special cases. Thus, approximate

methods of solution have been developed, and the most popu-

lar of these procedures is the method of finite differences.

Prior to the development of large scale digital computers,

practical numerical solution of the finite difference equa-

tions was almost entirely performed by pencil and paper re-

laxation methods. When computers became avallable, It was

found that tho original relaxation methods were not as suo-

cessful as some systematic computation of points in a con-

vienent cyclic order (1of 4:242)o As a result, the develop-

ment of new and the adaptation of old solution procedures

for use with digital computers has boon the subject of in-

tensive study in the past ten to fifteen years.

The state-of-the-art at the present time provides a

number of digital computer routines for solution of the

finite difference representation of the coion types of

partial differential equations encountered In engineering.

For Instance, the finite difference representation of

Foisson's equation, Vt2 4S (A. for- Ltz(0,) in the reot-

angular region R with U described on the boundary 6-- the

equation encountered in such divorse ongineori g routines

1.o
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as elasticity, heat transfer, electromagnetism and fluid

dynamics--has at least ten possible representations for use

in the solution. (ief 4:282). Ite theoretical bests for these

divi.rse m!hods &re .i cevl,-.peJ for the blyleh, two dMez.-

sional, rectangular 6eometr .nvolve. The theoretioal basis

for extending these routines intc cases of irregular geometry

and three dimensions is still rather fragentary, ibm state

oI development does, however, permit an experimental approach

to the Investigation of possible extensions to the existing

theory.

The specific case of the solution of the equation of non-

steady heat transfer represents an important computer routine

in a given engineering facility. In three dimensions, this

equation Is of the form

The presence of tae time dependence permits formation of two

popular forms of the finite difference representation, de-

pending on whether the arproxlmations of the space derivatives

are set to provide the forward difference (or explicit) equa-

tion or the backward difference (or implicit) equation. The

implicit form leads to the requirement to solve a large system

of simultaneous linear equutions (realistically, 500 or more).

The explicit form, lackinF; the mathematical complexities of

the implicit form, can be solved by a step-by-step solution of

2.
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explicit relationships, starting with given initial values

of u in the region h for a given time t.

The explicit form has one basic disadvantage, however.

In moving forward in time from the time of given initial

conditions, stability considerations require that a relation-

ship between grid size and time increments be maintained such

that decreasing the size of the grid requires a corresponding

decrease in time step. In computations over long periods of

time where data requirements for specific times Indicate

fairly large increments could be used, the size of the time

step is restricted by the useable grid size. This restric-

tion becomes a frustration that creates a vast and often

prohibitive amount of computation to obtain a solution. The

speed and capacity of modern computers has permitted wider

application of the explicit method to problems involving a

relatively large number of computational steps, but there In

still a practical limit to the number of time steps to be

computed. Even so, the solution of the explicit equation

remains a prime computer method of obtaining approximate solu-

tions to parabolic partial differential equations of Interest.

The solution of systems of linear equations has been a

subject of Intensive study by mathematicians for many years.

As a result, certain systematic Iteration procedures suitable

for hand calculation have been available to solve the linear

systems of the Implicit method. Yet, the additional com-

plexities of these procedures and the need for Iteration to

30
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solution made the trade-off point between i.:.p-.cit and ex-

p.Licit methods heavily in favor of the explicit form for

the class of problems that could be attacked by hand numer-

ical clculation. tfter large scale digital computers

offered potential for rapidily solving large numbers of

siamuitaneous equations, iaterest in zne implicit form was

renewed. Urhni and Nicholson seem to have been the first

to use implicit methods. In 1947, these men demonstrated

that the stability restrictions of the explicit method do

not apply to the ixplioit form (Ref 4:102), This promise

of freedom of choice of spece and time increments, subject

only to truncation error and convergence considerations,

offers attractive advantages that offset the disadvantage

of complexity of the implicit form.

As previously mentioned, a number of routines for solu-

tion of implicit equations by digital computers are in our-

rent use. 6inue the system of equations is generally large,

the more direct method of matrix iDversion Is not practical;

thus most routines use an iterative procedure. Of these

useful routines, the ones that are in oommon use are based

on the method of successive displacements--often referred to

as the Uauss-6iedel method. Successive displacements is

probably the simpliest iterative procedure, is easily adapted

to computer programs, and is therefore, widely used (hef

10:374). Routines have been developed to speed the rate of

convergence of the method of successive displacements.

4.
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In his doctoral dissertation in 1950, D. Young, working In

two dimensions, extended earlier work by F'rankel and pro-

vided a theoretical basis for a process that increases the

rate of convergence by systematically overrelaxing the Gauss-

Siedel solution of boundary value problems where u is speci-

fled on the boundary. Though the theoretical basis Is

somewhat restrictive, the practical success of overrelaxation

has led to the application of the method to other problems

with a significant Increase in the rate of convergence being

realized (kef 4:242). 6pecifically, overrelaxation has been

applied to the problem of transient heat transfer. In 1958,

J. Wegstein suggested a means of accelerating the conver-

gence of iterative solutions of problems of the form

(Hef 9). This procedure was empirically adapted to the

solution of the Implicit representation of the transient heat

transfer equation by B. Kaplan and N. Clark in 1958 (Ref 5).

In summary, analytical solutions to partial differential

equations are generally not available, so finite difference

methods are used to obtain approximate solutions. Two pop-

ular forms of the finite difference representation are avail-

able--the explicit and the implicit form. The explicit form

may be solved by a simple step-by-step procedure, but this

form suffers from restrictive stability considerations. In

fact, stability restrictions make the explicit form unsuitable

for the class of problems requiring solution over large time

increments (e.g. the determination of temperatures In a

5.
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Lucle&.r reactor after shut cOwTrj. THus, one must resort to

tne ir;icit form for a solution. escite relative freedom

of choice of erid size and time steps, if the number of

iterations required to obt.in a solution for each time step

is too large, the impLicit form may be eoually useless. Then

toe only nope of obtaining a s;Iution on a given type of ccm-

puter is to steed the rate of convergence of the iterative

solution, thereby reducin- the numoer of iterations required.

',sie from maxinC some solutions rossible, a successful

method of speeding convergence of a slower metnod of solving

the system of simuitaneous equations also results in attrac-

tive economy of computer operk;tion. aith these potential

gains as impetus, a major effort within the general field of

research in numerical analysis is being devoted to finding

rapidily converging solution procedures.

iuprose an acope

2his study is an attewpt to add to the practical knlow-

ledge of the use of tecnniques for accelerating the iterative

solution of the implicit form of the finite difference repre-

sentation oi the transient heat transfer problem. apecifi-

cally, the study provides a comparison of two tecnniques

for accelerating the method of successive displacements;

successive overrelaxation and an adapted Negstsin's accel-

erating technique. 'he primary points of comparison are

rate of convergence to solution, associated error, and simpli-

8.
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city and applicability of the method.

The comparison of the two methods is provided by the

solution of a sample heat transfer problem of conduction

in a cubic space which has a constant, distributed source

of heat energy in the interior region and boundaries that

are maintained F.t a constant temperature. The exact problem

chosen has an analytical solution which provides the stand-

ard for measure of error magnitudes.

Two additional points in the general area of acceler-

ating the rate of convergence of the method of successive

displacements are investigated.

1. Using an experimental approach, an attempt

is made to determine the effect on the rate of convergence

of scanning the finite difference grid in a spiral mode

from the fixed boundary conditions. The rate of convergence

is then compared to the rate obtained using a conventional

serial scanning sequence.

2. The theoretical basis for the accelerating

effect of successive overrelaxatilon and the adapted Wegateln

technique is reviewed for similiarities and differences of

the two methods. This information is then used as a basis

for experimental attempts to alter the basic adapted leNgsteln

technique to Improve the speed of convergence of this method.

7.
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1i. Theory

The Partial Differential ,QUation of Transient Heat Transfer

From tne theory of heat transfer, the partial differ-

ential equation of neat ccnauction with an internal beat

source or sin" may be expressed as the parabolic partial

differential equation (t-ef 1:45,

1 -A_.,= 1 V.K'qU" + -L _
CL ')t K W 1

where u(x,y,z,t) is tne tzperature (0Q)

z is the conductivity of the medium (cal/cm-sec-°0j

Is the streraeth ot tri, curce or sink (x,)sitivd

f,r a source--negative for a sink) in tuits of

energy generbted or absorbed per unit volume time

(cal/cma-sec)

a is the diffusivity (cml/sac) waiah m!uy be deter-

mined from =K/)Cp with e as density (gr/cm3

andCpas the heat capaicity (cal/gr-*C)

V is the del opera-toz of vector analysis which is

expressed as

with T, , nd tae usual cartesian unit vectors

Sith the simplifying assumption that the conductivity is a

constant, equation 1 reduces to
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The Finite ifferonoe heoresentation

The finite difference representation of equation 3 that

is used in this study is obtained by replacing the first

partial derivative with respect to time by the approximation

and the second partial with respect to a given space variable

by an approximation of the form

J = U( ot.' ll,-A tt") - zU(-, . +.. +U(.-1, ,A *4*) (5)

where -X k6)

to obtain the implicit form, or by

tU(L" " ".*. 1 i ) - 2D(a' A) 4. 13(A- ".A. (7)

to obtain the explicit form. dow these approximations are

formed using truncated Taylor series expansions for a sample

elliptic and parabolic partial differential equation and the

resulting matrix forms for a sample serial scan are shown in

detail in Appendix A.

Qubstituting the approximations given In equations 4 and

5 and simillar expressions for the partial derivatives with

respect to the y and z space variables Into equation 3, one

obtains the Implicit form of the finite difference equation

9.
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Q-Al
,

- ~A+~u(Lt &±A*)k

i'rom this equation, one can see that if the temsperatures

over the region are known at tlme t and the boundary values

and s,)urce strength 4 are rixed for tny time, then thie temp-

eratures at the interior nodes at time t+At f:-m a system

of 14 simultaneous equations in i uncnowns; one uaknown for

each interior node point. IlL matrix noVbtion, t.is system

may be expressed as

AU=)

Altmrnately, one may use equation 7 to approximate the

second partial to obtain the explicit form

- .1

++

nero, eaca interior node temperature at t4jt is expressed

explicitly in terms of .nown temperatures at time t so tbat

10.



there is no need to solve a system of simultaneous equations.

Solution krocedures for iystems of 6inear .auatIns

it has been shown that the implicit form of the para-

bolic equation * leads to a system of simultaneous finite

differenoe equations. The following forms of the solution

of the system will be considered:

1. The mthod of successive displacements (often

referred to as the Gauss-ziedel metnod)

2. Quacessive overrelaxation

3. Adapted .egstein convergence technique

Quecessive Displacements

bolution Prooedure

For simplicity in the expression of relationships, the

following notation is adopted

( )n (11)( Aj., , . -t )l

where n :the number of the Iteration

Gonsider the two dimensional parabolic equation

Vt.:_.L (12?)

in the implicit difference form with the gird size equal

in the x and y direction (i.e. ) or

A system of simultaneous equations also results from the

finite equations of elliptic boundary value problems -- 6ee

Appendix A.

11.
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+ U( [+ U (L, k4A
[U

Aftere ) _CLAZ

(14)

Using the method of successive displacements to solve t:e

system of equations resultinz from the above sample equation

involves the following steps*

1. ,stimating a starting value of U for the in-

terior grid points (i.e. those points in the region consid-

ered, excluding the known boundary points)

2. Improving these initial estimates ,uccurding to

an arbitrary but fixed ordering of points.

3. Using improved values as soon as available

• IT here Is a similiar procedure called simultaneous dis-

plbcements which is generally not as rapidily converging as

successive displacements, tbough it may converge in cases

where successive displacements diverges (Ref 3:133). The

essential difference is that in simultaneous displacements

no iL.proved value of U is used until all values are i.proved.

..duce convergence is generally slower, simultaneous displace-

ments ij not u popular metaos (nef 4:226).

12.
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4. Continuing the iterative cycle until the abso-

lute value of U of the present Iteration minus the value of

U of the previous iteration is equal to or less than an.

established criteria put into the computer as input data.

Thus, if the iteration notation is added to equation 13

the result is

IL ) r , r-)*I)-,

+ U (A., 15)

Convergtence

Probably the simpliest statement of the necessary con-

ditions for convergence of the method of successive displace-

ments Is given by eorsythe and ,tasow. They state that, "If

(the matrix) A (of equation 9) has diagonal dominance * and Is

not reducible, then the method of successive displacements

converges" (Ref 4:236). In pNuctioe, decreasing the grid

size has the effect of decreasing the diagonal dominance by

increasing the sum of the off-diagonal terms. because the

diagonal Is weakened, the convergence Is slower.

This simple statement of convergence is, Itowever, more

restrictive than necessary. L less restrictive but more

*See "Definitions", Appendix C
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complex criteria may be developed as follows ("ef 4:209).

Partition the matrix A into three matriaes such that

where z is the lower triangular matrix of aij where i >J

ani there are zeros elsewhare

Y is tie upper triangular matrix of a where 1 < J

and there are zeros elsewhere

i has the diagonal elements bLj and zeros elsawnere

it is taea possible to write the metnod of successlve dis-

ilaements in tne folAowiatg matrix form (k..f 4:L36)

U n (O (17)

Ihen tne necessary and sufficient c.,ndition for convergence

is that all the eigenvaiues of te matrix -(o F are less

tnan oue in modulus. iurtlier, 1.hee eieenvalues (ki) are

the zeros of the determinantal equation

ixamples of the forms of these matrices are given in lmppen-

dix B.

6ince the eigenvalues of the large matrices encountered

in practical problems are not easily determined, this cri-

terion is not very useful for estimating whether a given

system will converge for the metnod of successive displace-

ments. The size of the maximum eigenvalue does, however,

14.
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play an important role in accelerating the convergence of

the metnod of successive displacements. This role is dis-

cussed later.

une more important point must be made. The method of

successive displacements depends critically on the order in

which the various unknowns are computed, since the size of

the elgenvalues depend on this order and the smaller the

maximum elgenvalue, the faster the process converges (Ref

4:218,257).

6ucoessive Overrelaxation

.olution krooedure

iuocessive overrelaxation is the first method consid-

ered of 6he two methods of accelerating the convergence of

successive displacements that are compared In this study.

In this method acceleration is achieved by a simple modifi-

cation of the equation for solution by successive displace-

ments (tKef 9:388). The modified form for the transient

heat equation in three dimensions is

A'Ut,) + )IA, A.Ak)

+TJZ (Ak+LI(4 1  *I4k

+: 19 -)0 .

where W = relaxation factor

The procedure for solution is the same as for the method of

15.
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successive displaoements. Note that when Wu=, the form

reduces to the method o:f sucresbive displacements.

Applicability of' the Method

Young in his doctoral itsdertation showed tt.'t succes-

sive overrelaxation improves the convergence rute of the

method of successive displecements for a class of matrices

with a property he calls Property (Aj * (±'ef 4:243). No

attempt will be made here to describe in detail Young's

proof' of the theoretical basis for te methoc of successive

overrelaxation. hather, interest in the theory behind the

metaod will be centered on the determination of the optimum

relaxation factor. A detailed deacrlption of the theoreti-

cal background may be found in vorsythe and viasow beginning

on page 242 (Ref 4). 6pecifically, the method is applicable

to the approximations of the parabolic partial differential

equation of heat transfer used in this study (iief 4:105).

it is of interest to note that overrelaxation has been

so successful that the method has been profitably applied

to problems with matrices that do not have i-roperty (A).

iais success has led to work toward the extension of Young's

proof to a more general class of problems and has provided

a basis for the speculation that the method may be useful

for any problem (lhf 4:26C,261).

*. ee "Definitions" Appendix C

16.
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Determinin the Uptimum .elaxatiou Factor

Ahen the optimum relaxation factor is known, signlfi-

cant savings in iterations can be accrued by using overre-

laxation in the solution of partial differential equations.

'Mere is unfortunately, no simple direct way of accurately

determining the optimum factor prior to the start of com-

putations except for simple problems involving simple

geometry. Compounding the problem is the rate of degrad-

ation of savings as the

cnosen relaxation factor

moves away from the opti-

mum value. A character- OptiYwo..

istic plot of relaxation t

factor versus number of ra I
iterations to solution is t

it

result is that determin- $

ing the optimum factor is a a
1.0 1.9r 2 .othe most important prob- 1t.e0xaio1 2.0tov

lem in using the mthod of rig. I
successive overrelxationoo "284l n5ot of 1buapton 7, to

(Hef 4:257). A plot such lyeifl *eeteolI to s@Iuizt

as shown In figure 1 is a way of determining the optimum

factor, though, of course, a very impractical way unless a

large number of simliar problems are to be considered.

17.



Figure 1 demonstrates ad:iti.:,neL im!ortant properties

of the relsxation faotor. First, the liwits on the optimum

factor are I((a)<2 where (0--f is e uiva len t to the msetfod

of successive displacemer.ts. trat, rs iess than one are term-

ed underrelaxation end are krnown to be iess profitable than

A) I for acceleration ef 4:3t8). The upper ]iraL is

based in the maxiwLw eipenvilue of tte metnod of successive

displeacements. This relntiunsnlF will be described in mcre

aetii! Ifter. The second rierty is relatea to the shape

of the curve in the vicinity of the optimum factor. i'he

ialier rate of cnange :r svm,. on the nigh side of tleit

aptium demonstrates tnat it is netter to overestl.L,t! the

relaxation l'actcr tnan. tz un(irestimte it. " theoretical

busis for this property has beeL devel.;ed (het 4:2571.

Various means of estimatiLk the optimum factor have

been proposed. As a stsarting point iii reviewing the more

prominent metnod's, conslier the wears for determining the

factor for waplace's ecuation over a regular space. For the

nese cf equal grid size (h) end the finite difference repre-

sentation given by equation 74, the optimum relaxation

factor may be found from (Ref 9:366)

b + A +

where

.L8.



X o T (19b)

M-
(19c)

The varieble X is referred toas "the spectral radius * of

the linear transformation defined by the Gauss Aiedel (i.e.

successive displaementsi metod" (kief 9:387). The rela-

tionship of Xto the progress of the solution by successive

displacements may be demonstrated as follows. Define

Then X may be described as the limiting ratio of d(*)and

CLCM)or (Ref 9:387)

,.: (19e)
fose i arctan wts

Young goes on to give the following formula for computing
Afor LI.aplace's equation for a rectangle with sides

O,=R4L and b:Sfwhere R and 6 are integers (Ref 9:389)

X ~~(Cs - ±Cos 4lgf]

He then advises that for region& other than a rectangle,

may be estimated for a rectangle containing the region under

consideration.

For the parabolic equation of the form

See oDeflnitions", Appendix

19.



at yz×

an the finite a1fferercs !,-proxLticn oif

+ U(A.-,k +.&:) - 27J(A, ;t + )A 0 +I-k1,
Young provides thie fuo..in ", -r buund for X (iief 9:403)

A -_ ( IL (191)

w ere - 'at
1i~S)

TA en for tue two-dizen.ional t.al o~ic e,.ution

the upier bouna for ? beccmeL nt : 4Ub)

, f course, none of the anove formulae for -.,rovide a pre-

cibe expression for deterxinbno hn optimum relaxation factor

for the parabolic equation ol. transient neat transfer. 'hey

do, nowevr, provide an ir.sight into tile nature of the e-

pendence of (a) on the parameters or the problem.

.ince there is no direct method of computing the optimum

relaxation factor priur to the start of the iterative pro-

cess, a numoer of possibilities for estimatinC the factor

have been suggested. irincipal interest in this study Is in

20.
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the process of estimating the factor by running the computer

program with Wlhaii.e. by successive displacements) (Ref 4:

366,369). aow this leas to the optimum factor is described

as follows. One may aefine the optimum facto., by

WSE (20)

where ()- Is the dominant eigenvalue of tne matrix-(D+E)F

of the method of successive displacements

Under the assumption that the dominant eigenvaiue i-2s real,

a condition tnat will exist for example when the & matrix

is symmetric with all QL>O -- a common occurrence with

finite difference equations (Lef 4:252)--the value of qII)

may be determined from the limiting ratio of the norms of

the residuals* of two successive iterations, or (mef 4:369)

1II r (21)
where

i z tile number of unknowns in the system

This process i& dutsequently referreQ .o as tau norm of the

residuals. Alternately, one may uc6 the first power norm

Qn: IIY. .l.
11 Yt% I1 (,) (23)

where

*60e "DofinItions", Appendiz U

21.
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A--0 . L (24)

The apparent disaavantage of c nJ for a numoer of iter-

ations with (V=i is that one loses the effect of acceleration

while(Ois one. Unless there is a rapid convergence to the

vicinity of P', ), tnis loss of acceleration may degrade the

metnod to a point where very littl.e acceleration is fchievea.

Is it possible then to determiLe tue optimum factor

while running with an estLate? £. rcgin this discussion,

the effect of the successive overrelaxation modification of

the successive displacements e.uation .n the pertinent eigen-

values is of interest. The eleenvalues of the overrelaxation

equation are given by the expression 1nef 4:247)

L D + D' +(28)

where D, 1., and F are as given on page 14

I'his compares to equation 18, the equation for finding the

elgenvalues of the method of successive displacements. If

one defines

then two important properties of H(Q)) can be cited. "The

(Wi) w
eigenvalues ktLof H((a) remain the same for any consistent

orderOw" (Aef 4:R51). Order here implies the order in ihich

the points are taken. &% consistent order is described later.

22.
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Thus, "when the matrix A has Property (A), the value of

is independent of the order~for a considerable class of

orders (called consistent)" (Ref 4:261).

The problem encountered in running with a trial relax-

ation factor to determine the optimum is the "sequence of

values of UYml in any norm is a rather irregular sequence for

W near Wopt" (Ref 4:370), and there is difficulty in de-

termining which trial value ofais the best. xxperiments

by Ortega have indicated that the sequence of values of the

ratios of the first power norm Qmdemonstrate differences

between values in the sequence that are low in magnitude

for W4%(and relatively high in magnitude for trial near

or slightly larger than Wopt(khef 4:371). The results thus

far have been inconclusive, however.

The remaining point to be covered in this subparagraph

is the definition of consistent order. According to Young,

an order is consistent "if and only if each elementary square

mesh of the net Is bounded by four arrows with zero circula-

tion" (kief 4:245,246). Figure 2 demonstrates consistent and

nonconsistent orders.

A pertinent question Is wnat happens when one uses an

nonconsistent order for successive overrelaxation? Varga has

proven that for LaPlace's equation, no nonconsistent order

has a rate of convergence as great as that comon to all con-

sistent orders (Aef 4:259). Powers Investigated this point

23.
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for the Dirionlet difference equation * for a rectangle and

some of her results have been displayed in Table 1. (Ref 7)

These results are generally considered inconclusive since

she chose to use a measure of convergence criteria of

which proved to be relatively insensitive (k ef 4:259).

L.onveraence

The question of convergence is simply covered by the

following quotation. "The power of Young's method lies in

its acceleration of the rtite of convergence of an already

convergent process, not in any ability to create a conver-

gent algorithm,...' (Ref 4:254).

Tl Adapted Neastein Convergence Technique

The Joestein Tochnigue

The true Regstein technique, which is the basis for

this second method of accelerating the method of successive

displacements, was originally developed for accelerating

the Iterative solution of a single equation-not a system

of linear equations. If the problem is to determine the

solution of

F(X) = 0 (28)

one may often express the equation In the form (Ref 8:9)

S = x) (29)

d*oe "Definitiona," Appendix C

25.
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Table i

Sample Results of Solution of the Dirichlet

ifference Equation by

Consistent and Nonconsistent Orders
Number of Iterations

Ordera Using Crtimum W With (a)

Consistent

Serial b 34 ?46

Even-Oddc 30 24G

Nonconsistent

Ordered by rows,
direction reversed 43 148
fo" elCeh row

Spiral 4 41 147

Random selection 33 14?

Spiral border,
random Interior 36 147

This data is extracted from reference 6
'The problem wes 14 nodes along the y axis and 6 nodes

along x

b This scan sequence was: U(IJ) to J(I,14), then U(2,1)

to U(2,14), and so on to U(6,1) to U(6,14)

C tarting with U(1,1), the points for which i.J is even

were computed first in sequence, Then returning to U(2,1)
the remaJning points were computed in sequence.

d U(Ij) was taken for J a 1,...,14; then U(i,14) i = 2,3,4,5

then U(6,J) for J = 14, 13,..., 2, 1; the-- U(il) for
i • 5 4,3,2. This patten %-ms then repeated starting with
U(2,25 to U(2,13) etc.

26.



Then an Iterative solution can assume the following algorithm

Alternately, it F(x):o cannot be written in the form given

by equation 29, the algorithm

X = X + ( ,,., (31)

where rio is some appropriately chosen constant

can be used.

Assuming F(xl-o has a solution, the normal iterative

process is to assume a value of K= X ( ), use this value in

equation 30 (or 31) and solve for ). Then i used to

find X t and so on until the absolute value of the residual

(i.e. j,9ft#) - X(M) ) is less than some specified crV-rerion.

'Is sequence of values of %ill show any one of the follow-

ing characteristios (Lef 8:9)

1. Oscillate and converge

2. Osoillate and diverge

3. Converge monotonically

4. Diverge monotonically

To obtain the accelerating technique, the basic Iter-

ative equation is modified to give (Hosf 8:9)

(32)

where q Is the accelerating factor

the tilde (N ) Indicates a value computed by the

accelerating technique

2?.
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Negstein states that with the appropriate selection of "q",

one may cause convergent cases to converge more rapidly and

divergent cases to become convergent.

Tho procedure used is best described by a diagram of

the process (Mef 8:11). This diagram is provided in figure 3.

St2rting with the estimate XCt , compute an improved

value )(M')using St &(1. On this first iteration, the

modified form (equation 32) is not used and the values for

the next iteration are set up thru the center path on the

diagram. On subsequent iterations, the process loops thru

the outside loop until the residuals are as small as desired.

The derivation of "q" may be described in the following

manner (Ref 8:9-11). "Geometrically, the solution of fluS(A)

amounts to the problem of finding the point if intersection

P (see figure 4) of the curves d= X and t < cR . The

iteration can be represented graphically as

follows. Pass a vertical line through a point IX#(jon

LA Y so that it intersects the curve j=j(x) at some point

A with the coordinates lx I' .

"The Ideal location for X (ft1d =

on AB would, of course, be the intersection point 0 with the

normal to AB drawn through P. Thus, 'q' should be chosen

such that

%- c (33)-
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To determine 'q' approximately, observe that PC BC and

Sa = (-C/ 4)

where 'a' is a value of f'(x) between i and P. Thus,

--0. - (

or

0- (36)

Sinoe a more convenient expression in lacking, 'a' can be

approximated by a suitable difference quotient"

.A variation of the above Is to compute a new value of

"q" after each iteration using

S x(f.n) - X(m) (38)

AdaDtation to Simultaneous xouations

"aplan and Clark used the basic Wegatein technique and

through a series of experiments empirically adapted it to

the solution of the system of equations resulting from the

Implicit finite difference representation of the equation

of transient heat transfer. The forms of the equations used

are identical to equations 32, 36, and 38

where

-I (40)
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The basic solution procedure used is the method of successive

dispiLacements (nef 6:80).

The steps of the adapted process is presented in si.mpli-

fied diagrhmmAtic form in figure 5 (Mtef 5:10). Jn the first

iteration, the initial values are set up but no acceleration

is attempted. Tiais process of setting up but not accelerating

the solution is continued until the solution proceeds to a

specific number of iterations. This number is predetermined

prior to running tae program and is input data to the computer.

When the appropriate iteration for the first application of

the technique has been reached, a slope "a* is computed for

each node, tested to insure that it is less than one and

greater than zero, and if the criteria is met, an acceler-

ating factor wq" is computed (Hef 6:80). This value of "q"

that has been computed for each node is further tested to in-

sure that it does not exceed a given maximum value and if the

value exceeds the maximum, "q" Is set equal to the maximum

value. ohould "q" not exceed the maximum, the value computed

from the slope is used. Then the value of "o" resulting from

this test is used to accelerate the solution using equation 39.

The accelerated value of temperature then replaces the value

computed by the method of successive displacements in the

computer memory ana the process proceeds to the next node.

6hould the slope test fall, the accelerating technique is not

32.
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applied and the value of temperature computed by successive

displacements Is used in subsequent computations. Follow-

Ing this initial application of the technique to selected nodes,

the pertinent tests and applications of the aocelerating

factor are only made at a repetitious interval of iterations

specified by an input to the computer (e.g. once every five

iterations). For those iterations when the tecnnique is not

applied, the value oV temperature computed by the method of

successive displacements Is used as before the first applica-

tion.

In the process of refining this adaptation of the Wegstein

tecnnique, Laplan and Clark made the following observations

on the size of pertinent parameters.

1. The correct iteration to apply the technique

is when the value of the slope "a" is greater than zero or

less than one.

2. If the technique Is applied too soon, the solu-

tion may actually be slowed down. "~aplan and Clark provide

the following oriterion for the first application of the

technique. The initial application should be made on the

iteration which is equal In number to the depth of the deepest

node from the boundary (Ref 5:6). lor example, a one dimen-

sional problem of 30 nodes has the deepest node 15 from the

boundary, so the Initial application of the accelerating

technique is made on Iteration number 15.

34.
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3. 'The solution may also be slowed down If the tech-

nique Is applied too often. This result is attributed to the

fact that "the slopes of all the functions do not settle down

immediately" (Hef 5:2). The criterion suggested for frequency

of application of the technique is given as one half the dis-

tance to the deepest node from the boundary (Ref 5:6). Thus,

for the example in paragraph 2 above, the technique would be

applied every seventh iteration.

& Comparison 2L. o uoessive Overrelaxation and _Qe Adapted

Weastein Techniaue

An apparent similiarity between the method of successive

displacements ana the adapted Wegstein technique can be demon-

strated. This relationship may be shown as follows.

Yor convenience let

(m..le.,t+ t)+

as computed by the method or successive displacements. Then

the equation used for overrelexation may be expressed as

The equation for the adapted Jegstein technique may be re-

written in the form

'V #%#11

U (~, ,' a, k = -*k (44)

Assuming a correspondence between U&. ,.,M+A ) and

35.



U) It can be seen that

I(4) (45)

6ince, Iurtharmore, It is known that ) is restricted to

values between 1. and 2, It would follow that for the rola-

tionship between nq" and W) to hold, the range of values of

"q" would be

-I <se.) (46)

t'he fact that q Is negative is consistent with the findings

of Kaplan and Clark (Azef 5:5). Kaplan was not as restric-

tive on the maximum negative value or "q", however. de

presents one series of runs where "r" was restricted to

values between -10C and 0.

Further eviience of a ;otential tie-in batween the two

methods of acceleratian !, rour. in tho dis o1on c?' esti-

mating the relaxation factor by ruanin with )= I to

obtair an eatlmate of the maximum eigenvalue a, • As Pre-

viously shown, the optimum relaxation factor may be found

from the equation

arte 2 (20)

(I).

In addition, ) may be exDressed in the expanded form

Now, since I'(Wept cz fron equation 20 above, the limits on

(a)
can be shown to be

38.
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or since 0,'t.i) ')- isepoeitive.

By comparison, the equation for tue slope test of the adapted

Wegstein tecnnique is given by

#K+I' - U n
O. - 0 (' ' 0 '"")t 41)

The simillarity between trAa .,' equation and the equation

for I i s obvious. An additional simillarity is found In

the fact that Kaplan experimentally determined that the slope

should be restricted to values between 0 and 1, which is

compatible with the restriction on P'.

Though there in a definite simillarity in the way ), and

*a" are computed, a major difference lies in the method of

application of tne factor computed from *a' and 
-. In the

adapted Oegatein technique an acoelerating factor "q" is com-

puted separately for each grid point, ibile for overrelaza-

tion the same relaxation factor is used for all grid points.

Further evidence that the two methods are closely re-

lated can be derived using an expression for accelerating the

convergence or the mood of successive displacements given

by V. N. Faddeeva (lief 3:241). der expression Is

- 41h) )I
+ /(49)
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where i is a vector

kkis determinea from the rtio of the comronents

of tne vectors R(/ ) - )tI'and 3("'' - R.(m%-')

oL.ce tne notation is in vectors, consider an n component

vector for X.

X1X

.4" + (3 I-(5G) - / .. 1€ -

icueting the first component

( +t /-1",.- 
(51)

rationalizing and rearranging

ow (e t

I- (. ./'L' -,t5

= ,-, ..., (/4)-

°.
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Substituting these expressions into equation 51, one obtains

which is the form for overrelazation.

Alternately, let

then At, I
/4,-I A, -/ (-5,-,

so that one may write equation 51 in the form

X.-% (58)

which ls of course, the form of the adapted 4egstein tech-

nique without the tildes (N).

As in successive overrelaxation,/Lils described as the

largest proper number (eigenvalue) of the matrix Agwhere

A, = (59)

and B and C are the triangular constituent matrices of the

matrix A of the system

5k =AR +(61)

Though the system under consideration is of the form-n

it can be simply demonstrated that this form can be rewrIt-

ten In the form of equation 60. (see Appendix B)
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Keturn to the assumed correspondence between

Uand U (-As pre-

viously described, tie tilde t'v) indicates a value computed

by the iiegstein techniue as differentiated from a value

computed by the method of successive displacements. In a

sense, the ,,t4jt) value of overrelaxation should

also have a tilde since it represents a value computed

using the accelertting factor (4). This analogy is not as

straight forward as It seems, however. The Wegstein teoh-

nique as adapted by Kaplan and Clark is not applied at

every iteration, whereas the overrelaxation factor is.

cinco for those iterations waere the ,egsteiu technique Is

not applied, the " (ils set equal to thoU value, If the

application of the 9egst ein techntique is restricted to

every other iteration, the tilde loses Its significance.

i'urther, if application of the technique is restricted to

every fourth iteration, the tilde loses its significance

in the equation for comruting the slope "a". Znce the

frequency of application is usually equal to the number of

nodes to the deepest node from the boundary, and a problem

only four nodes deep Is quite small, the frequency of ap-

plication Is generally greater than every fourth Iteration.

One more Important point must be made. The Wegstein

technique for a single equation can force convergence on a

divergent Iteration process. When, however, the method was

40.
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adapted to solution of a system of linear equations, no de-

termination was made as to whether convergence could be

forced on a diverging set of linear equations. On the other

hand, the metnoa of successive overrelaxation cannot foroe

oonvergence on a diverging set of linear equations.

41.



III. irocedu-es

komputer roaramig

The basic computer used for this study was tne B 1620

with associated IbkL 1823 additional memory unit end 1617 1622

card reader/punch. The leZO proved to be a relatively slow

system and some of the computer runs would have taeen an ex-

cessive amount of time on this system. To circumvent this

situation, the IBU 709Q computer of the eronautical -ystems

Division was employed for tie longer runs. As it turned out,

the IBL 7Q0 using the relatively new FORTRUAN IV programming

system proved to be well over 100 tiaes faster than tne IbM

1620 for the programs run. Lack of funds prevented exclusive

use of the IBM 7090, however.

The FORTRAN language system and Its variations were used

for programming; FOzTh" II for tne three dimensional pro-

grams run on the IBM 1620 and iORTRAS IV for the IBM 7090.

iertinent programs are Included In Appendix 1). It should

be emphasized that these programs were written In the sim-

pliest possible manner consistent with the requiremnt to

provide an accurate specific set of data. No attempt was

made to generalize a given program to fit a number of sit-

uations. The Individual programs were not specifically

reviewed for possible revisions to reduce running time or

required memory spaces. The single exception is the progran
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for the analytical solution of the sample problem. gunning

time was particularly critical on tais program, so it was

thoroughly reviewed to insure that the program steps pro-

vided the fastest solution procedure consistent with FORTRAN

language.

6tandard Used =o owarisio of veed 9_f ConvergLence

From the discussion above, one can visualize the diffi-

culty in using time as a measure of speed of convergence.

The problem is further complicated by the fact that different

computers may do a given operation in different ways and in

different times. Thus one must, so to speak, nondimension-

alize the rate of convergence and machine time to solution

to have a meaningful standard. This is generally accomplished

by using the numaber of iterations to solution as the standard

between Iterative procedures rather than time. An iteration

Is defined as the computation required to make a single Im-

provement In the values of &J unknowns, This study uses the

number of iterations to compare the various methods In rate

of oonvergenoeo

1M U Relaatio Fco Sucoessive

overrelazation

dinoe there Is no general method for computing the optimum

relaxation factor (W ) prior to the start of the Iterative

43.
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process, there is a problem of what factor to use for over-

relaxation in the comparison of metods. ibe emphasis in

trLs study is on the practical application of a given method

to the solution of the transient heat transfer problem. Thus,

to be practical the metnod of obtaining the relaxation factor

(W) should be automated to the maximum extent possible and

should require a minimum amount of prior inowledge of the

successive overrelaxation process by the using engineer. Of

all the methods suggested for estimating W , the estimation

of the maximum eigenvalue by running withW-I fits the above

criteria better tan other methods discovered in the litera-

ture. This method was used to provide the number of itera-

tions to solution for the metnod of successive overrelaxation.

*Lbe above selection does not preclude an interest in

what successive overrelaxation can do under optimum condi-

tions, however. Ao determine the optimum factor needed for

optimum overrelaxation, a plot of Iterations versus various

relaxation factors was used (see page lb).

6ince there usually is no exact procedure for determin-

ing the error associated with a given finite difference ap-

proximation, a comon procedure is to select a problem with

an analytical solution to use as the standard for comparison

with the finite difference solution. This procedure was

adopted In this study.
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Th Jamnie .rroblem i~loe

Again using the criterion of praotioality, a three-

dimensional problem was chosen. An analytical solution

for a three-dimensional problem for heat transfer over a

rectangle with a constant internal heat source was found

in literature. 6pecifloally, If heat is produced for t, 0

at the constant rate 4 per uuxit time unit volume in a rec-

tangle of dimensions xmb, yx a, zx d and the surface is

kept at zero degrees, then the temperature over the region

0dx<b, C-yca, 0- zcd is given by (Lhef 1:363)

o0 0 0

LL (6 LA I Z d

whore a s.±~
L 6V ds

.hoosing to work iu three dimensions did limit the size

of the problem to be solved due to the limited storage capa-

city of the IBM 1620 system. When the above problea was

solved, a cube one centimeter on a side was used for the re-

gion of Interest. It was then necessary to use syinetry to

permit selection of grid sizes as small as 0.1 on.

'5.



Iiffusivity (a) and conductivity (K) were chosen as

1.0 cmL/sec and 1.0 cal/cm-sec-t respectively. These

values approximate the parameters for copper whose true

values are 1.14 cmr/sec for diffusivity and 0.93 cal/cm-

sec- C for conductivity (Ref 1:497). The source strength

( ) was limited to 2000 cal/cm3-sec to permit final temper-

atures within the region to be of a physically reasonable

size. Unless otherwise stated, the above values of a, t,

and 4 were used in all the solutions obtained.

Comparina 6piral Versus Lerlal acan

If the size of the residuals are observed after each

iteration, one immediately notices that the residuals for

points close to the fixed boundary conditions meet the con-

vergence criterion much sooner than those furtherest from

the boundary. Intuitively, one could see where the repeated

use of at least one "correct" value for the adjacent nodes

to compute the value of the point being considered could

conceivably hasten the convergence of this point to the

desired solution. Thus, It seems logical to assume that any

scanning procedure which would use all the boundary values

as soon as possible In the solution sequence would converge

faster than a serial scan. The optimum scan for achieving

this condition Is to spiral Inward from the boundary.
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The particular spiral scans used sre shown in figures

6 and 7. As one can see from the figures, the taree-dimen-

sional case where syz-metry is used can be classed as a con-

sistent scan (see page 22), while the full spiral used in

the two-dimenslonal case is nonoonsistent. The fuil spiral

case was restricted to two dimensions by the lack of storage

capacity of the IBM 1620 system used in the computations.

The particular full spiral used was chosen to permit maximum

use of the "DO loops" of the FO>TRAN language system, thereby

achieving a degree of simplicity in the program.

While testing various types of spirals for consistency

prior to the choice of the one to use, a conclusion was

reached that all full spiral scans are nonconsistent. Tnis

conclusion is based on the following fact. s one proceeds

normally inward from the boundary following the direction of

the higher numbered points, the elementary squares of the

mesh show consistency in the region close to the boundary.

,Wnen the center of the grid Is approached, nonconsistencies

develop due to the changing direction of the hiiher numbers.

un the other hand, consistent orders exhibit the property of

a single general direction for the progression of higner

numbered grid points.

% ethod oL Tein iu a I terative Lrocess
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1. By sweep
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The iterative process Is generally concluded by measur-

ing the size of the residi-als and terminating the program

when the size of the residuals meet some predetermined cri-

terion. Some possible criteria that may be used are:

1. Requiring the average of all the residuals

to be less taan some specified number.

2. Aequiring the sum of the residuals to be less

than some specified number (see page 22).

3. hoquiring the individual residuals to be less

than a specified number--if one fails the test, all fall.

The fact that all residuals do not converge at the same

rate has been mentioned on page 44. In methods 1 and 2 above,

any major inbalance in convergence rate could result in a

relatively large inaccuracy in the points which converge at

the slowest rate. In practical applications, method 3 is

used to avoid this potential inaccuracy. Purtbher, method 3

is the most sensitive measure of convergence.

In view of the above, the convergence criterion used

in this study required ell points to be less tLan a given

number or a new Iteration was begun.

Selection of IM Initial Atimate Teertur

A good initial estimate of temperatures throughout the

region of interest could reduce the number of Iterations

required to solve the problem by the method of successive

50.
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displaomaents and the two accelerating techniques used in

this study. kll runs were made with an initial estimate

of zero degrees for the temperature of all Internal grid

points, however. side from reasons of standardization

among solution procedures, starting at zero removes any

screening of the convergence of the running computation of

relaxation factor (using (W= 1) by differences In accuracy

among the estimates of temperatures at Individual points.

Procedue A o w 12 Force Conn ce Uing the

Aodagte Watsin Tooblausg

A quick cheoic was set up to investigate whether the

adapted egstein technique could force oonvergence. The

test was to use the adapted Aegstein technique on the

following set of equations which were known to give a diver-

gent solution when the method of successive displacements

was used In an attempt to solve the system.

)(I +ZXZ- 2Y.3 = I
x, 4. Xt + X3 =3

2x, +1X& + X3 :5 (6)

This set Is, Incidentally, a case where convergence

can be obtained using the metbod of simultaneous displace-

mante (see footnote page 12).

51.
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IV. hesults

aerial versus jiral 6can

The results of the comparison of the rate of conver-

gence of a spiral and serial scan are displayed in tables

2 and 3.

There was no observed advantage in the use of the

consistent semi-spiral scan using symmetry as applied to

the three dimensional problem, since the number of Itera-

tions remained the same for both serial and spiral scan

even when the convergence criterion was tightened until

the computer out-off rounding procedure caused all residuals

to become zero.

Ahen a two-dimensional problem was solved using a

nonconsistent full spiral, some small savings in Iterations

did occur for the spiral scan. Furthermore, as the grid

size (h) was decreased to cause the solution to converge

more slowly, the savings in iterations snowed a slight

increase.

Determinonk tue O Relaxation F

Plots of nuaber Iterations versus relaxation factor

are shown In figures g and 10. Figure 8, demonstrating the

progress of the temperatures at the center of the cube with

increasing time, is also pertinent to this particular dis-
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Table 2

Iterations to Solution for a Serial Scan and

a Three-Diiensional Semi-Spiral Scr

Scan Total Number of Iterations

Type - idual Size

0.005 0.00005 less than 10

Serial 91 145 195

Spiral 91 145 195

Residual Size

1.0 0.05 0005

Serial 31 51 67

Spiral b 31 51 67

C t a 2.0 seo; hx a h ah z a 0.1 cm

b t a 0.2 se; hx a hy a hZ a 0.125 c m

Solutions by the method of suocssive displacements
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Table 3

Iterations to Solution for a Serial Scan and
a Two-Dimensional Full Spiral Scan

Scan Total Number of Iterations
Tyre Residual Sise ....

0.5 0.005 0.00005

SerialC 29 66 102
Spirale' 28 65 111

Serialb 69 218
Spiral 67 215,

Seri al 80 688
Spiral' 78 684 1

L t n 0.2 seo; h. v hy a 0,1 am
b t a 0.2 e; h. a h y 0.05 am

0 t a 0.2 eeo; h. v hy a 0.025 am
Solutions by the method of suooeeove displacements
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oussion. This figure shows that the temperature has essentially

reaohed a steady state value after only 0.2 seconds for the

parameters a, K, and q used in this study.

Figure 9 clearly demonstrates a dependence of the relax-

ation factor on the time variable by the shift in the optimum

factor for the times of 0.01 and (.5 seconds. The point that

the optimum factor Is the same for 0.5 and 2.0 seconds is at-

tributed to the fact that for these times the temperatures

within the cubs are at their steady state values. This Is

further confirmed by figure 10, where there Is only a small

shift in the optimum between 0.2 (nearing steady state) and

2.0 seconds (well into steady state conditions).

A space dependence of the relaxation factor Is demon-

strated by a combination of the two figures. For a time of

2.0 seconds there Is a shift in the optimum factor between

the case of unequal grid sizes for the three coordinate

directions.

Gom9 rinM al Aggatia Festers IL Uho Apttd Wescstein

Teohniue ari Successiv Overrolaxation

figures 11 and 12 display the results of making a run-

ning estimate of the relaxation factor while Iterating with

the method of sucoessive displacements. The relaxation fac-

tor (a was oomputed for each Iteration using the current

estimate of te maximum oigenvalue OZ-o. This oigenvalue was,

55.



GA/Fhys/63-8

.. .........I... ...T
...........
........

10

...... (....

Fi0.

P 60.



wh 0(n1) y.125 hs w025o(C)ool
* time a 0.0 sea

'With !(n+1). U 5 0.00oo1

60To

50

N~mber 40
of

iterations...............

1.0 19 i5*33 1.46 1.59 1.72 1.85
Relaution Pactor

Pig. 9

Tszlation of Number of Iterations

for Varylug mpi tuB.. of Belazation Factor



G a/T /63-8

7 ~ ~ TIh .1C

so< e time 0*2 sea

3 7 -,.. ... ..

70 ! I-7- - -

40 --

-0 I LO~i

valuum Ofmotof-eamfor ari swft"of -mmm -of-



..... ... . ..
...... --- ......- .

....... ....... ...........

2.54

2
2.51

I+ F -". MI
Methods of computing it,1.50
A norm of residuals

1-49 0 lot power norm

average of slopes "a"
1*46

t a 2.0 sea

1.47 hxuylsn 0.1 an

1*46 ....

.. ...........
I e4-

of ban'" Ca"atattes of "Ientica rutor



GA/IPvj s/63-3

fo 0.1 a Z 025 erind02 cs

Itr~saNme

1.60.



S, k/ hys/ 83-8

in turn, computed In three different ways: as the norm of the

residuals (equation 21), as tWe first power norm of the resid-

uals (equation 23), and uz the avra r the Aegstein slopes

computed from f aL/number of interior nodes. figure 11 is

for equal grid sizes, %ile fik-5re 12 is for the more general

case of unequal grid sizes.

The important features displayed by figures 11 and 12 are:

1. The use of the norm of the residuals to find the

optimum factor converged rapidily and smoothly to a value that

was less than the known optimum.

2. The procedure using the first power norm con-

verged to a value closer to the optimum factor (once to a

value greater than (4Pe and once to a value less than o).pt )

than the method using the norm, but at a slower rate. In the

case of equal grid sizes, for example, if one were to accept

a value of Was the relaxation factor when ( ¢n _' (A fe)<.O01

then, using the norm would provide a value in 12 iterations

while the first power norm does not meet this criterion until

after 16 iterations.

3. The average value of the slopes does provide an

and therefore, an (O which converges to the same value as

the method using the norm. The convergence Is slower, however,

To meet the same criteria as used in item 2 above, 21 iterations

would be required.

61.



At the same time the above data was comp)uted, the

individual slopes oi" the interior grid poirnta were observed

every fiftn iteriLtion. £he primary observaticns of Interest

are:

1. 4ll the individual slopes converged to the

same value and this value was identical to the maximum eigen-

value obtained by use of the norm of' the residuals.

2. Jhe individual values of the slopes converFed

in different ways ind at different rates. Okaracteristically,

the points nearest the boundary which normally were the

fastest to arrive at a solution (i.e. meet the convergene

criteria for the residuals) started at values of slope con-

siderably below the final value and converged rather slowly.

un tr~e otner nand, the points furtnerest from the boundary

wnach Lre normally the last to reach a solution, started

witn values of slope greater than the final value and con-

verged faster than the points close to the boundary. ibis

fect is displayed in figure 13 for two extreme grid points.

observations o_ the Qharacteristics 2_ toe Convergence 21

the oolution for the 1hree krocedures Used

Figure 14 ts a plot of the progress of the solution with

incretsing iterations for the node in the center of the cube.

The higher rate of convergence for the two accelerating pro-

oedures is to be expected. The significant point displayed
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by this figure is the contrast between the modes of convergence

of tae two accelerating procedurss. &s in the case of successive

dispiacements, the solution by successive overrelaxation con-

verges throug. a smooth pvcgression of values of temperatures.

In contrast to this smooth progression, tho convrgence of the

adapted legstein technique is ragged with spurts of accelera-

tion followed by h smootning process. This raggedness is due,

of course, to the intermittent application of the Oegstein

tecdnlque. Note that as the solution approaches the final

value eacn application of the 4'egstein acceleratlnfi factor

tends to cause the solution to overshoot the final value.

This i taen followed by a period of use of the method of

successive displacements which pulls tne value back toward

the fiLaI temperature. .s a matter of fact, for every solution

obtained by use or the adupted ooe stein tecnnique the process not

the convergence criteria and the program terminated on an itera-

tion that was computed by the metnod of successive displacements

and was about two-thirds or more of the way along toward the

next application of the tecanique. i'or instance, in the solution

displuyed in figure 14 tne process stopped on iteration number

56 where the last prior application of the technique was on

iteration number 54 with the next application due on Iteration 60.

There is some danger of misunderstanding being crevted by

snowing only one grid point in figure 14. une must recognize

that the over-acceleration does not nave to occur on the individ-

64.
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ual grid point to cause an overshoot. £he comjutational pro-

cedure uses adjacent grid points to calculte the temperature

at the point of interest, so any over-acceleration of a nearby

point will produce h sigLificant effect on adjacent nodee and

a aiminishina effect as one moves away from the node that was

over-accelerated. Thus, tnere is an interrelated cause and

effect relationsnip tzat is not apparent from figure 14.

One added point must be cited. voith the parameters se-

lected for soluticL of the sample problem, the rate of con-

vergence to solution turned out to be higher than desired to

demonstrate the effects of acceleration. 1o circumvent tais

situation, too basic procedures were used to Increase the

number of iterations. aince the available memory capacity of

the IRM 1820 prevented decrease of grid size below 0.1 cm,

tighter convergence criteria than one might expect to choose

in a practical problem was used. Qecond, the span between

initial estimate and final temperature was maximized by using

times that brought the temperature near or well into steady

state conditions. Increasing the source strength and there-

fore, the final temperature had a negligible effect on in-

creasing iterations dlue to the increased contribution of the

4 ter: of equation 10 to the size of the temperature step for

each iteration.

Lffectiveness of th Accelerating Technigues

Table 4 shows the results of solving the sample problem

66.
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Table 4

Results of Accelerating the Method of Successive
Displacements by Using Successive Overrelaxation or

the Adapted Wegstein Technique

Item Iterations Convergence Savings
Criteria

un 1 R 1 un 2 Run 1 Run 2 Run 1 Run 2

successive 80 91 .005 .005DiSplacements 145 -- .00005 --- -

Overrelamstin 29 32 .005 .005 64% 65%
with knom C 48 .00005 67%

Overrelaxation 42 47 .005 .005 48% 48%
by Estimating 69 .00005 52%
( While Run-
ning with 4DaI I

Normal 58 58 .005 .005 28% 364
Adapted 89 .00005 39%
Wegetein
Technique I
&For these rune, t a 0.2 sec; At = 0,2 see; all grid sizes

were equal at 0.1 cam

bPor these runs, t a 2.0 sec; At a 2.0 sec; all grid sizes

were equal at 0.1 cam

CThe optimum values of the relaxation factor for these rune

were taken from figure .

dWhen fi)( +', *.I the running computation of (V was
terminated and the current value of W"'was then used to
continue the solution by regular overrela.ation. ( was
computed using the norm of the residuals to find D, .

The deepest node was six from the boundary, so the tech-
nique was first applied on the 12th iteration and on
every sixth iteration thereafter. q was restricted to
a maximum of -100.
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for two different times using the same grid size for both

problems. The primary items of interest in this table are:

1. Quccessive overrelaxation using tne optimum relax-

ation factor showed the fastest rate of convergence witn

savings in iterations of the order of d5p over the method

of successive displacements.

2. aignificant savings did result from the more practi-

cal procedure of making a running estimate of relaxation

factor from the residuals of the method of successive dis-

placements.

3. The adapted 4egstein technique was only about 57?o

as effective in acceleratin6 sucoessivo displacements hs

overrelaxation with the running computation of relazation

factor.

4. z.Jcept for the case of the adapted .egstein tech-

nique, savings remained essentially constaut between runs

using the same convergence criterion. in the case of the

adapted elegstein a significant increase in savings (8A)

occurred for the run with the slower rate of convergence.

This is due to the ragged nature of the convergence of the

adapted 'degstein technique.

5. ill methods showed a slight increase in savings

for a decrease (tightening) in convergence criterion,

Since the two methods of computing a running estimate

of the optimum relaxation factor (first power norm and norm

68.
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of the residuals of the method of successive displacements)

had approximately eaual rates of convergence, a comparison

of the two methods was made. rable 5 displays tnese results

and shows that the first power norm further increased tne

savings in iterations over the procedure usinf the n(,rm. it

is obvious tnat though the first power norm was slightly

slower converging to a final value of relaxation factor, the

fact tnat this method produced a better estimate of the

optimum factor tnan the norm overcame the slower start.

x'orcing %;onverence with the a-dapted egstein fecnnique

X'igure 15 displays the results of attempting to force

convergence on the set of taree simultaneous equationa given

in equation 63. Unly one of the three unknowns is plotted

since the Iterative solutions exhibited the same general diver-

gent characteristics.

Initially, the normal procedure for usin the adapted

degstein teonnique was attempted with the initial applica-

tion on the fourth iteration and every other iteration there-

after. Qhis procedure completely failed because the diver-

gence was such that the slope test failed in every attempt

to apply the technique. £he process was terminated after

l iterations.

A second attempt was made using the same frequency of

application as in the first attempt with the slope test deleted.

69.



GA/Phys/63-8

Table 5

A Comparison of Methods of Making a

Running Computation of Relaxation Factor

for Use with Suocessive Overrelaxation

Method of Making the Iterations 0 Savings (%)
Running Computation of ) P In

_________________ RIm Rm2 Run 1Run 2

First Power Normc 40 43 50 53

Norm of the Residual@u 42 47 48 48

0 For these runs, t a at a 0.2 see; all grid sizes equal
at 0.1 cm

For these runs, t w At a 2.0 see; &l1 grid sizes equal
at 0.1 om

© See equation 23
See equation 21

All savings compared to the method of successive dis-
placements

All convergence criteria were 0.005

10.
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The results obtained are the ones displayed in figure 14.

In a third attempt, the technique was applied at the

second iteration and on every other Iteration thereafter.

The slope test was again deleted. Ahese results displayed

the same oscillatint divergence as the second case.

Finally, an attempt wes tried using the same frequency

.i" applicatLn is the third case, but this time the slope

test was used again. Tlhe slope test still prevented the

application of the accelerating technique and the process

was terminated after 10 iterations.

Though the solution continued to diverge, there was a

anange in the mode of divergence when the adapted 4egstein

technique was applied. When an attempt was made to solve

the system using only successive displacements, the solutions

diverged monotonically. Oith the use of the adapted "egstein

technique, these solutions became oscillating and divergent.

zrror

Table 6 compares the error at selected grid points re-

sulting from the three solution techniaues used in this

study. Xne important points are demonstrated by this table:

1. The solutions for tne successive overrelaxation

and adapted 0egstein metnods are more accurate than the method

oL" successive displacements. This is a result of the technique

72.



GA/Fhys/6E3-8

*a !2 on on SOs 0

o~con

I4 A NCr JIC

110

pg 0%C 4

I aI

0 j 4 A

I 
-t.- CA

0 000 0 CC

o cc o 4 0 C 00

C) *.C 0 01 1 0 0 0 SO0

73.



used for terainating the iterations. Using the residuals

as tae measure of convergence results in more accurate

answers for a repidily converging solution than for a slowly

converging one. Figure 16 demonstr tes this change of con-

vergence error due to a change in convergence rate. In the

results shown in table 6, this effect is somewhat moderated

by the rather tigalt convergence criteria of (.005 used to ob-

tain the solutions.

2. The solutions for 2.0 seconds show about one-

fifta of the error encountered for (.L seconds. jince tne

time step for 2.0 seconds is ten times greater than 0.2

seconds and truncation error * is a function of grid and time

step size, one would expect the reverse results. As pre-

viously cited, at 2.0 seconds the solution is well into

steady state conditions, wails 0.2 seconds is Just approao-

ing steady state. ihese results demonstrate the fact that

wnen one desires to use a transient neat transfer program to

obtain a steady state solution, the best results are obtained

with a time step tnat puts one well into steady state con-

ditions. Taking the lar~er time step permits more complete

convergence of the Iterative solution.

Testing a .tevlslon to tM Adapted Neastein Technious

The apparent relationsnip between overrelaxation and

the adapted ,egstein technique suggested certain potential
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revisions to the adapted ,,egstein technique. A limited a-

mount of time was avai.Ltble to Look into possible revisions,

so the investigation was restricted to a relatively obvious

revision that one might make to smooth the ragged convergence

of the rcgular technique.

The revision attempted was to replace4)by its equi-

valent in terms of k'(see equation 20) in equation 45 to

obtain a new expression for computing "q" of

2

+ ,/I-_2 X( 4.ia)

This equation, in conjanction with the slope test restrict-

ing values of "a" to 0<ca 41, would keep the acceptable

values of "a" within the limits specified by equation 46. It

was hoped that this revision would also take advantage of

potential offered by the individuality of the modes of con-

vergence of the slopes for individual grid points. As pre-

viously suggested, the nodes with the slowest rate of con-

vergence to solution have slopes that converge through a se-

quence of values that, wnen used in equation 40a, would Live

better q's as the values are greater than optimum. 6inoe the

convergence was assumed to be smoother than the regular adapted

Negsatein tecnnique, the acceleration was applied on every iter-

ation beginning with iteration six for the first run with this

revision. L second run was then made with the technique ap-

plied every iteration beginning with iteration two-- the earli-
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iest possible iteration that values of "a" can be computed.

The results of this revision are shown in table 7. The

complete failure of this revision was apparently due to a

combination of the small size of the q's used and the number

of rejected slopes that resulted in unacoelerated nodes.

Computer ilunning Times

During the initial attempts to obtain an analytical

solution using the IEL 1620 computer, a wholly unexpected

difficulty arose. The time required to obtain an analytical

solution using the IBM 1620 was impossibly long. For in-

stance, it took 8 minutes and 20 seconds per grid point to

do the triple summation using equal maximum summation indices

of only 5. A graphical estimate of the time to do a summa-

tion with maxLum indices at 20 showed an approximate time of

two nours per grid point. Yurther, another plot of solutions

versus maximum summation indices indicated tnAt the summa-

tion indices should be at least 20 to obtain the three-place

accuracy desired.

This situation forced the use of the faster IBM 7090

system. The same problem solved on the 7C,90 took only 13.5

seconds per grid point for maximum Indices of 20, and 38

seconds per point for indices of 30.

This incident prompted interest In other comparisons.

for Instance, It took the 7090 only 49 seconds to solve a

two-dimensional problem of 400 nodes that took 218 iterations
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Table 7

Tabulation of the Effects of a Revision to

the Adapted Wegstein Procedure

Method Iterations

Nuimber Savings(%

Regular adapted Wegstein 58 36

Revined:b Apply technique on
every iteration beginning 72 21
with iteration 6

Revisedtb Apply technique on
every iteration beginning 70
with Iteration 2

Savin,-a over the method of eucoessive dieplaceutenits

b Using equation 40& in lieu of eq-ation 40 to cojntute q
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whereas, the IBM 1820 used roughly one hour and 45 minutes

to solve a three-dimensional. problem of 125 nodes that took

only 91 Iterations.
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V. onclusions and Recommendations

onclusions

It is apparent tht thne aaapted liegstein technique

and successive overrelaxation have the same theoretical

basis. Thepri.i:e differences are in the method of appli-

cation or the accelerating factor ad the used/permitted

size of the accelerating factor.

The results obtained in this study lead one to con-

sider the adapted Slegstein technique as a gross overre-

laxation procedure. This technique apparently obtains

its acceleration power from a series of gross overrelex-

ations of a few nodes and the ability of the method of

successive displacements to distribute this large accel-

eration to otaer adjacent nodes while pulling the value

of tae overrelaxed node baci in line. 'tie problem with

this procedure is the lacic of control of the spurts of

over acceleration in the late stages of the Iterative

process. zow one might control this to better advantage

is an unanswered question. The results obtained when an

attempt was made to smooth the acceleration tentatively

indicate tnat no simple revision of the adapted oegsteiln

tecnnique is going to provide a significant increase in

the ability of the procedure to reduce iterations. l'here

is no Intent to suggest that the method will never approach

the method of overrelaxation in total savings of iterations.
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The results obtained cannot support such a conclusion. 'he

best chance for improvement seems to be in the use of the

individuality of the convergence of the slope "a" of the

nodes. To use this characteristic effectively, however, one

must find a way to isolate the disturbing effect on the

slopes of having the adjacent nodes accelerated. In this

way the slope test will not reduce the number of nodes that

receive acceleration.

A possible procedure for isolating the slopes would

be to generate a matrix of q's on the nth iteration without

applying the technique. 'Men the q's genert ted on the nth

Iteretion would be applied on the (n+l)st Iteration. This

would be followed by a period of iterations by successive

displacements to smooth the slopes. "hen the same procedure

of delayed application could be used again, and so on. Using

the normal method of computing q (equation 40) would permit

values that tend to overaccelerate, so that this aspect of

the adapted *egsteln technique would be retained. A disad-

vantage of this method would be the requirement to store

another matrix equal In size to the number of unknowns.

The results using the optimum factor are obviously the

maximum savings that can be achieved by the process of

estimating for successive overrelaxation. It Is also

likely that this optimum overrelaxation represents the max-

imum attainable savings for the adapted Wegstein technique.
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Yet, a chance series of events could cause a gross over-

acceleration early in tne process. Ahen after a few iter-

ations of successive displaceents, tne temper-:tures could

oe rjrcujnt bacK to a value near tneir final value oefore the

suotner successive overrelaxation Process. vne ceinnot, of

course, build a procedure on the basis of chance, but the

results ootained permit the speculation that it mignt be

possible tu increase tae probability of occurrence of this

cnance.

.One adapted iee-steln tecanique suffers from two other

significant disacvantages when compared with successive

overrelaxation. 1he tecnnioue requires a more complex prc-

gram ano the storage of one adcitional mutrix of values

equal in size to the number of unKnowns, -ith computers the

size of the 7UQ with a capacity of 4(,CQU words available,

the storage space required may not be a criticel reouirement.

Iflis does, aowever, restrict the use of the method to rel-

atively large computer facilities. In view o1 these mecL-

anical disadvantages of programming and storage, the adaptec

,',egteiL tecnnique would nave to be able to produce greater

savings tnan the procedure of maxing a ruiuninc estimate of

the relazatio, factor b,.fu .: th technique is widely accepted.

for successive overrelaxation, the results indicate

that the practical procedure of making a runiag estimate

of relaxation factor does result in significant savings of
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iterations. rhese results also indicate tihat tae best pro-

cedure to use is the fi.st power norm when eatimtin, the

factor. 'nis is fortunate since the first power norm re-

quires less computation than the norm because the residuals

ave not squarea prior to sumir,. ivore conclusive prA.)f is

required, nowever. The simplicity of the saraple problem

could nave oti~ized the convergence ol the first power norm.

Despite tae results, tue nore general case could be thit t:,e

use of tae first power norm degredes the proceduLe compares

to the norm since the two were relatively close in tne re-

sults obtained. upporting t: is assertion are the facts

that in the tno cases of comparison tabulated, the norm did

reach a final value sooner and was consistently lower tnan

optimum waile the first power norm produced a factor that

for one run was greater than optimum ana for the other less.

Despite the simplicity of the test to see if the adapted

.,egstein tec.nique can force convergence, one must conclude

that it cannot. Tais follows logically from the fact that

the adapted .. egstein tecnnique nas the same theoretical basis

as successive overrelaxation and successive overrelaxation

has been shown to be theoretically incapable of forcing con-

vergence. Furthermore, the technique uses and aepends heav-

ily upon the method of successive displacements which is a

significant difference from the ",egatein technique applied to

a single equation. Thus, the adapted aegstein technique cannot



force convergence if the method of successive displacements

diverges.

6ince thiere was no real breek away of one method in

the results obtained for the comparison of serial and sciral

scrns, the results seem inconclusive. in the other nana,

the results can support a conclusion t:at no caan;7e in scan

procedure will produce a signific' nt acceleratior. of tae

solution by successive displacements.

despite their li'Atations, tower's results sulgest the

second possible conclusion. Her results show only a smail

incremt.nt of change in the number of iterations by successive

displacements for the various scan procedures used. iiis is

consistent witn the results obtained ii. this investigtion.

The absence of a source of accelerLtion from a relaxation

factor or equivalent to provide the large temperature incre-

ments per iterhtion in the initial iterations supports the

second conclusion. eurtnermore, since the full spiral scan

is nonconsistent, it is unlikely that using successive over-

relpxation or the adapted .egstein technique with the full

spiral fo- further acceleration will prove to be as rood as

aceeleration with a serial scan. Thus, the facts available

from this study seem to Indicate that no significant advantage

can be acnieve oy use of other than a consistent serial .can,
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hecommenda t ions

This investigation provides a theoretical basis Vor the

adapted e;egstein technique which was not previously defined,

but fails to use this knowledge in any broad experimentation

designed to improve the technique. There is, tnerefore, a

justification for further study and comparison to improve the

technique and draw a firm conclusion as to the better metnod

of accelerating the method of successive displacements.

It Is recommended that any further expansion of this

work be done with sample nest transfer problems of the type

solved in a practical situation in order tnat performance may

be better related to real situations.
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Appendix A

Cosrcigthe Finite Difference Eguation

Two particular types of partial differential equations

are to be considered in this appendix# the elliptic equation

and the parabolic equation.

A typical elliptic partial differential equation is

the Laplacian,

2 V A0 (64)
where + +~~

The boundary conditions specify u on the boundary of the

region considered.

The parabolic partial differential equation considered

has as its form

a a (65)

with the following boundary conditions

la6cV.3,,4) C RUV1 In the region
is(xau.) .(ic,f, ) on the boundary

The approximations to the partial derivatives are

formed from truncated Taylor series expansions in the fol-

lowing umnner, Expanding about point (xet*y*,t9) one may

obtain
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LL (, +A I V j Il, 4o) 14X Lsc. V.,r. 16) +*II4D

2fa w,%Bo- (66)

or

2.1 X& 'Xft*',*ee (67)

Truncating ecuations 66 and 67 at the second prrtial der-

ivative term and adding the twc e:.pressions, one obtains the

arproximation for the second partial derivative term of

. U(.A x,*,6., t.)- 2 U(-., .. u Q +13 (,x,,x,w.,.) (8
a x1  ) (68)

The expression for the first partial derivative is obtained

by subtracting the two equations to obtain

W~ A* t. (69)

Note that as the intervals Ax, Ay, Az or At become smaller,

fewer and fewer terms are required to obtain a good approx-

imation since the interval is raised to successively higher

powers with each new term making such terms as

30 8 1' 7 ~4 etc3t aXI 4 ')4a
less significant. Thus, if one reduces the time and/or

space interval, a more accurate solution should result.
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This fact does constitute a simple test of the validity of

one's solution. For the test, one halves the grid size used

for the solution at hand and determines a new solution with

this smaller grid size. If the two solutions give answers

that are in reasonable agreement with each other, then one

has some assurance that the original solution is correct.

Starting first with the elliptic equation (number 64),

when one substitutes the expressions given in equation 68

for the partial derivatives, the finite difference approxi-

mation

L (At (tJ rAX 'l - (70)
+ U(w.. *,*+ +Uz- ,

is obtained. One may generalize this equation using the

following notation

A: a. X C. +£4L6X- As'Is 2 ...

A I C 4 01*+ A40i*i 1l O" m ... 3.)

Then equation 70 may be written in the genea form

+ U(72)
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If -A "t=the form simplifies to

+C~ U(A1&) -A)[CLII + U(h-I,jA+) + ULj~ i,)(3

For two dimensions, the form becomes

Thus, U(i,J,k) is expressed in terms of values of U

at nodes one point away in the direction of the coordinate

axes. Since the given boundary values only specify U's on

the boundary, each U(ijk) is expressed in terms of other

unknom values at the interior node points or a combination

of unknowm interior points and known boundary points. The

result is a system of simultaneous linear equations equal in

number to the number of interior nodal points.

As an example of how the system of equations is con-

structed, consider the two dimensional grid with mesh points

numbered as shoyn and boundary values lettered.

/I'"l A.

o -4-5-6..9

9L 6c d£i

With boundary values prescribed@ Us tl= Up are knoon and

may be considered constant. The unkmowns can be described

by the following nine finite difference equations (for the
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nine interior nodes).

-4U +tU +U4 +Up +UVb -0

U, -4UA+ US +Us +Ut SO
Ua-4V5  +U6 :U0 + Us o

U, -404 +Us +U,+Uo -o
U, +1J4 - 4US -U6 4Ue =0

Us + Ur + Us-4Ud +Uq -0
U U. +UJ4 -4Uv +Us =0 (75)

UA +UL 4U7 -49 +Uq o
U, Uq +U6 4US -4Uq =0

Rearrankir4 and placing the constant boundary values on the

right, the system can be written in the matrix form

-4 I o I o 0 0 0 0 U, C,
I-4 1 0 1 0 0 00 1J,

0 1 -4 0 0 1 0 00 us CS
S00-4 101 0 0 U4 C4

0 I 1 -4 I 0 1 0 Us -C
0 0 1 0 1 -4 0 0 1 U C C4 (76)
0 0 0 1 0 0 -4 1 0 U7  C,

o o o 1 0 1 -41 Us Ce
0 0 0 0 0 1 0 1 -4 .Cq.

or in matrix notation

AU :=C (77)
It is interestIng to note that the matrix A is equal to

its transpose (or r * A? ) which indicates that A is a
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symmetric matrix.

As in the case of the elliptic equation, equation 68 is

used in the parabolic equation to approximate the second par-

tial derivative. Then equation 69 is used to approximate the

partial with respect to time, This time, however, there is

a choice of time level to use in the approximation cf the

second partial derivative. Which level of time, t or t + At,

is set into the approximation of v 2 u is optional, but the

two levels lead to two different forms of the parabolic

finite difference representation.

To obtain the explicit form, one chosen the level t to

get

U , (X = s w [( +U(uI,,iiA,±)

+ A AU(A , t,) + U(A

A +
This equation is knoin as the explicit form since U(xy,s,t+ t)

in explicitly expressed in terms of kown values at the level

t.

Since u at any xt , s and some starting time t i are

given, the solution cn be started at t a ti, where the U's

on the right side of the above equation are knowne, and solve

for the unilow U(iJkt+At) for each mesh point in the region.

92.
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Once U is knovn for all mesh points at the level t. + At

the process is repeated to obtains U's at the level of

ti + 2At, and so on to the time desired.

Though this explicit form doe. not leEd to the require-

ment to solve a system of equations, it does hove the dis-

advantage of being restricted by stability considerations.

Unless the following criteria are met, an instability exists

that causes a growth of errors from time step to time step

which ultimately reaches the point where error dominates the

solution (Ref 4:92 ). For this particular finite differ-

enoe representation, stability w.ll exist if

(80)
for the three-dimensionel problem, or

4 (81)
for the two-dimensional problems *here for - = -

/L = (82)

One can see that any change in space (or time) increment

must be accompani ed by -- proportional chenge in ti:ne (or

space) increment.

Alteriately, V2 u can be set at the level t + ', t to get

the implicit form (i.e. "a group of components of U at level

t .+ -.t are defined simultaneously in such Fn interrelnted

manner that it is necessary to solve a linear subsystem for

the whole subset of compone'ts at once before a single one

95.
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can be determined" (Ref :267)

+ 2 aat( +

- 1 [ULz,,+,-,.± .) - (83)

- ~I~~Tu(h. , t4, ',t + U(A, .,.i .&,, .j: tU(A,&,,,t)
For the case of equal grid size in the three coordinate

directicns, one may write

- IL [U ( .A.. I t+&) + U(1-,, t +4.j)

+ U( -,, -4,.t At) + U(h $ ,,, 4AA)

(84)

where

For two dimenhions end e.ual grid sizes, one may write

IL EU(A.+I.t,44 ) + U(-, Dl.,Aj,,t)

+ U (A , 8+ I I I+ AAJ +U(A, . #, t) =u Ag
Sine U at any x, y, 5, and some starting time t In

speoified by given initial conditions, t Je solution cen be

94.
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commenced at ti + At and U(i,J,kt ) would be knowm and

the remaining U's form a system of simultaneous equations

at the level ti + At. This need to solve a system of equa-

tions re.nAlted from the finite difference representation

of the elliptic equation, and a comparison of the matrix

forms of the elliptic and parabolic equations is of interest.

Taking the same sample grid system that was used for

the elliptic equation, the system of equations for the im-

plicit form are

( +44)U, -AlUt -AU4 :- rP+UA) + uJt,
-A UJ +CI+4A)U-A Us- /Ur- -Uc +V,A
-&Ua +00-4V- AU6 -- id+Mr) + UO
P, U, + (144A)V4-UE# - -V 47LFr,+ l;4,

-AUs -A, N + (1 4A)Su-AU6 - A 1 =V4

/I US - ATUs 4 (1 ,4)%, -&ULq ,, 3 -4 U6,* (8 6)

-A U4 + (i+4,t) LT-A, US - p +U )+V,,*
AUs -A Sr, + (/+A) t -AU9 =-U+Vt *

-AU4 -A UI + (1+4) V9 a- (ul+W ) +V,.

where Umt a U(ijkt)--knov from Initial conditions

or previous computations

Unn a U(i,3,kt+at)

In matrix form the system becomes
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In matrix form the system becomes

(+44)-I 0 -IL 0 0 0 0 0 13, CO
- IL (+4& -it 0 -,A 0 0 0 00 %1

o -it (1+44) 0 0 -/L o 0 o US C,

-XL 0 0 (443 -1L o 'M 0  o 4 C.
o -L - Ci4ft -,, o .It , IC ,

o 0 -L 0 -/, (44jtA o - , U4 C,

0 o 0 -A 0 o (4,,)-,IL 0/1, C, (87)

0 0 0 o -& o -A. ("44-& b ICe
0 0 a 0 0 -X 0 A L A R .C".

which in matrix notation is

AID z(88)

These matrices have the same general form as those for the

elliptic equation and, thus, the implicit form may be thought

of as equivalent to solving an elliptic equation at each time

step.

96.
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ApI endix B

Samrle Matrix Forms

The system under consideration is of the form AU = C

where sample expanded forms are given in equations 76 and

86 in Appendix A. The example parabolic equation used in

Aprendix A will be used as an example in this Appendix to

develop the forms of the matrices that comprise the expres-

sion for determining the pertinent eigenvalues of the sol-

ution procedures considered in this study*

To begin this development, divide each equation of

the system given in equation 86 by the common diagonal ele-

ment of the A matrix to obtain (Ref 3:128)

-IL - U, U4.&... =
-~~ IL O +US

ae (89)

After moving the off-diagonal terms to the right, the system

can be written in matrix notation as

= (90)

where .

Ca

ge?
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r 0 0 0o
& 0 00 0

t+4) +4

0 0 0 Ag - (91)

The m=trix S may be subdivided into two triangular constit-

uent matrices (Ref " :134)

w = (92)S* SB+C
where

00 0 0 0 000 0

14AO 0 0 0 0 00
0 0~, 0 0 0 0

0 o0 0 0 000 0
L o & o oo (93)

00T 0 0 0 0

o A
a nw.0 4%0.00 0

C 0 0 00 0 ~0 0
0 0 00 T&0 0

0 0 0 & 0 50 . 6 0

0 00 0 00 0 00 (94)

N.ow, note that the B matrix contains the elements associated

with the (n + 1)st Iteration ind the C m...trix with the nth

iteration of the method of successive displcements for the

consistent serial scan shown in Aprendix A.
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One may then write

+ + (95)

vhich may be rearranged to

U~~~ C.,) (~a) ~ 4 (96)

f-. )U(_O.= fCf c4, ' (97)

which is equivalent to the form

5z=AR (61)

Prom the section on theory one can find two descriptions

of the partitioning of the A matrix to find the elgenvalues

of the method of successive displacements. Equation 16

partitions the A matrix into

to arrive at the determinantal equation for the eigenvalues

of

d~f,(I~- 16+ J) 0(18)

In this case the forms fbr the submatrioes are

= 0 0 (I4Aw 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1+414. (99)
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-0 0 0 0 000

-FL. 0 0 0 0 0 0 0 0
0 -/L 0- O0 0 00 0
0-I, a 0 0O 0 00
0 - t0 -it 0 0 0 0 0 (10
o 0 -t0 0-A. 0-0 0 0
0 0 00- 0-0?0o 00/(100
a I0 -A 0 X0 /,00

0 0-_A 0-it 0 00 0
0 0 0 0 0 -A, 0 0 0
0 0 0 0 -/ 0 -X 0 0
0 0 0 00 -X 0 -A 0
0 0 00 000a 0 -4L
0 0 0 00 0 0 -/& 0

LO 0 00 000 0 i0L)

Alternately, equation 59 gives the form of partitioning

of the A matrix as

A =I - §7'1(59)

For this form, Mrs Padeeva advises that the eigenvalues

may be found from the deteruinantal equation (Ref :135)

The forms of the B and C matrix ares given in equations 93

and 94. The I matrix is an identity matrix Of the uuual

form of

100.
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I 0 0 00 .. 0o

0 1 0 0 ... 0 0
0 0 1 0 0 . 0 0

0 0 0 1 0 0 0

00 0 0 , (103)

Note that the relationships between the D, E9 and F and I,

O, and B matrices may be expressed as

(104)- -I- .4)o4

1+4* (105)

The equivalence of qUations 18 and 102 can be demon-

strated in the following manner. First, rearrange 18 to

d, [P (b+)'n =0 (107)

Now if one multiplies this expression by the reciprocal of

the diagonal element of the D matrix, solutions of the deter-

minantal equation are ueffected. This action results in

det ( [+ 1 0 (108)
(44 Ly4v (4.~ j

which by the use of equations 104 to 106 can be rewritten

in the exact form of equation 102.

101.
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Appendix 0

Lafini tions

Diagonal Dminaance:

For a matrix to possess the characteristic of diagonal

dominanue, the following relationship must exist for the

elements of the matrix:

N

#2 (109 )
*"

eroperty WA): (ilef 4:243)

A square matrix A of order N is said to have property

(A) if there exists a permutation matrix such that

is diagonally block tridiak;onal.

Q-,ectral hadius: (,hef 10:94)

The spectral radius In defined as the maximum of the

moduli of the olgenvalues of a given matrix.

Irl1c io Difference, .ouation:

The finite difference equation that represents the

partial differential equation VtL- 0 in tra region * tb

t& = on the boundary.

102.
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Residual:

The difference between two suooessive improved values

at a given node, I.e.

= U,)

103.
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C SOLUTION OF THREE SIMULTANEOUS EQUATIONS BY THE GAUSS
C SIEDEL METHIOD WITH OPTICN FOR WEGSTEIN ACCELERATION
C
C SPECIFY DIMENSIONFD VARIABLES
C

DIMENSION A(3,3) ,B13)XNEW( 3),X(3),DIFFI3)
DIMENSION WX( 3)tWXNEW(3),WDIFF(3)

C RLAD INPUT DATA
REAU,AE 1, ) ,A(l',2htA(1,3) ,A(2, lbA( 2,2) A(2, 3)

RtA 1t 1t)tA( 3,2) ,A( 3,3)
R[ADtB( 1) .(2),B( 3)
READ#X(ihpX(2)#X(3)vERR
,FAr), IAPLYAPPLY;WMAX,WSET

C
C SET INITIAL VALUES AND EST*IMATES

DO 60 1=1,3
DIFF( I)=O.O

60 WDIFF(I)=O.O
C
C :OUNT IS AN EXIT CONTROL THAT COUNTS THE NUMBER
C OF PASSES THRU THE COMPUTATIONAL SEQUENCE

COUNT=0.0
C
C SET ITERATION COUNTER

I rNUMzO
35 ITNUM=ITNUM+l

C~iuNT=COUNT.1.0
PRINT 104

104 FORMAT MI
PRINT 6,ITNUM

6 FORMATC9HITERATIONvI4/)
C
C WHEN A 0,VEN RESIDUAL FAILS TO PASS THE CONVERGENCE
L. TEST, ICHEK IS SET a I AND NO MORE RESIDUALS ARE CHECKED
C UNTIL THE NEXT ITERATION

ICHEK=O
C
c COMPUTATIONAL SEQUENCE

N=O
PRINT 30

30 FORMAT(L3H VALUES OF X 93XP14HX(N+1) -X(N) /
46 4=N4I

40 IF(N-2)292941
41 IFIN-3)3#3t42
1 XNEW(IIIL./A(I.I).IB(I)-A(l,2).x(2)-A(1,3).X(3)I

DIFF(I)=XNEW(l)-X( I)
GO TO 43

2 XNEWE?)al./A(292).(B(2)-A(2,1V..X(I)-A(293).X(3) I

104.
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UIFF(2)=XNEW(2)-Xt2)
GO TO 43

3 XNEW(3)=l./A(3,3)*(B(3)-A(3t1)*X(1)-A(3,2).X(2))
DIFF(3)=XNEWI3)-X(3)

C
C PRINT Our RESULTS EVERY ITERATION
43 PRINT 620XNEW(N)tDIFF(N)
62 FORMAT (2EI4.8/)

X(N)=XNEW(N)

C
C BYPASS rHE ACCELERATING TECHNIQUE BY SETTING SWITCH ONE OFF

IF{SENSE SWITCH 1)71,46
C
C SEI UP WEGSTEIN VALUES FOR THE FIRST ITERATION
71 IF(ITNUM-I)44.44945
44 WDIFF(N)sDIFF(N)

WX(N)=XNEW(N)
X(N)=XNEW(i)
GO TO 46

C
C INPUT IAPPLY DETERMINES THE ITERATION FOR THE FIRST
C APPLICATION OF THE TECHNIQUE
45 IF(ITNUM-IAPLY)47,53t53

C
C THE INPUT APPLY DETERMINES HOW OFTEN THE TECHNIQUE IS APPLIED
53 IF(COUNT-APPLY)47t48*48
41 WDIFF(N )=XNEW(N)-WX(N)

WX(N)=XNEW(N)
X(N)=XNEW(N)

GO TO 46
48 IF(N-3) 63t54,54
54 COUN1=0.

C
C THE ADAPTED WEGSTEIN TECHNIQUE
63 WTEST-DIFFiN)/WDIFFIN)

WFACT=WTEST/iWTEST-i.)
PRINT 101,WTESTWFACT

107 FORMAT (/8HSLOPE a 9E14.892Xp9HFACTOR a #E14.8)
C
C BYPASS THE SLOPE TEST BY SETTING SWITCH 2 OFF

IF(SENSE SWITCH 2) 105,50
105 IFIWTEST)41,47t49
49 IFIWTEST-1.150947,47

C
C TEST ACCELERATED SOLUTICNS AGAINST ESTABLISHED
C CONVERGENCE CRITERIA WHEN TECHNIQUE IS USED
50 IFIABS(WFACT)-WMAX)52952951
51 WFACTs-WSET

105."



GA/Fhys/63-8

51 WgNLW(N)zWFACT*WX(N)+(I.-WFACT).XNEW(N)
PRINT 61,WXNEW(N)

61 FORMAT(ILIHWXNEW(N) - ,E14.8/)
Wt)IFF(N)=WXNEWIN)-WX(N)

C
C WHEN THE WEGSTEIN TECHNIQUE IS BYPASSED
C TEST GAUSS SIEDEL SOLUTIONS FOR CONVERGENCE

IF(AhS(W0IFF(N))-ERR) B,80t,8L
80 ICHLK=l
81 WX(N)=WXNEW(N)

X(N)=WXNEW(N)
GU TO 46

C
C TEST TO SEE IF A NEW ITERATION IS REQUIRED
42 IF(ICHEK) 72,72,35
12 DO 33 J=l,3

IF(ABS(DIFF(J))-ERR) 33,33,35
33 CONTINUE

C
C PRINT OUT INPUT DATA FOR REFERENCE PURPOSES

DO [00 J=193
D0 [00 1=1,3

100 PRINT IOIA(I,J),I,J
10l FORMAT(/9HA(IJ) stE14.8,6H I 2 ,1396H J = ,13)

O0 [02 1=1,3
102 PRINT 103,8(1)
10 FORMAT(/9H O(1) = ,E14.8)

C
13 Slop

END
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GA/Phys/63-8

Increase It. Cwuts u(n+i) MA Increase It.
Counter Counter
PW w Fu(n+l)-U(n) by Sue. Disp.

UM = U(n) 96+1) = Ou'(0)
U(I) a Uip) U(n+l) = U(n)
(1) - 70) this 1h -Vti f Ire 1w1(n) - Wn-l) U( +1) z U(S)

Set MA Store
j(A+l) 7. U(2*1)

U(n) = U(n+l) ogo," 0

166+1)AA) Opp it -

U(R+I)-U(n) ItT Set and Stovel

u(s) z U(S 1)
is #V

all Ufa it* to the 
z

be 1!
been cam t Lpepb

ut4df

Hav

for 
Uts

CcMute Sic" sot a son

U(S 1) -U(n) W(S+l)v U(R+I)
x

Uwl)-lim)

Oc a It* counter
U(241)00(m)

OkMM DXAQJW4

coma" w Tz a-1)

qz */a -
tile-,

30 t Q

I as$ 
6 

store
not and $(&+IA a) a) --bfA I stpre"t U( : 2u(S

107.



,A/ PH VS /63-8

C HEAT TRAN1SFER IN CUBE-NCNSTEADY, CONSTANT SOURCE B~Y GAUSS SIEDEL
L USING vWEGSTEIN cnNVERGENCE TECHNIQUE
C

DIMENSION U(7,7,7),UOLD(7,77) ,WDIFF(7,1,lbhWU(7,7,7)
C
L READ) INPUT DATA

READ 61, LASTXLASTY9LASTZ
61 FORMAT (313)

READ53vDI FUS ,COND,DELT, SORC
53 FO0FATC4F1O.O)

AEAD 54eLRRXGRID,YGR I0,IGRID,TMAX
54 FORMAT(5FIO.OJ

READ 56, IRITFJRITtKRITEJITERKITER
56 FORMAT ( 114)

READ 4609IAPPt.Y,APPLY,WIOAX
460 FORMAT14t2F10.0)

c
L SLT BOUNDARY VALUES

DO J K=ltLASTI
00 3 J1,pLASTY
DOU 3 I=1,LASTX

601 UOt.D( I#JpK)=O.0

3 W.U( I JK)=U( I ,JK)
C
C COMPUTE CON4STANTS

A:(2./(XKGRID.*2)),(2./(YGRID..2)),(2./(LGRID**2))
B=DIFUS'J)ELT
Czd/ ( X6RID"*2)
0:8/ IYGR I O**2
Ezi/ (LGRLD*.2)
G=L./C 1.+B*A)
F=G.3*SORC/LOND

c SET TIME SIFPS AND ITERATION COUNTER
r IML=G.

14 TIMi =IIME.UELT
I TNUM=O
CO UN T :0

C CHOOSE EITHER PUNCHED OW PRINTED OUTPUJT BY SETTING SWITCH ONE
C OFF FOR PUNCHED OUTP'UT CR ON FOR PRINTED OUTPUT.

Ir(SENSE SWITCH 1)81980
80 PUNCH 50,TIME

LuO [o I
81 PRINT 5UDTIME
50 FORMATI/18HNEW TIME INCREMENTPIO.3)
I ITNUM=ITNUM.1

CDU4NTzCOUNT+ 1.0
IF(SENSE SWITCH 1383,82

82 PUNCH 519ITNUM
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GO TO 84
83 PRINT 51ITNUM
51 FORMAT (/15X916HITERATICN NUMBER.I4/)

C
C COMPUTATIONAL STEPS

84 ILAST=LASTX-1
JLASTxLASTY-1
KLAS T=LAS Ti-i
KTEST=KLASTILAST+JLAST
ICHECK&O
DO 2 K-2tKLAST
DO 2 J=29JLAST
DO 2 1s2tILAST
gKuI+J*K

Q=G*D*(UI I,J41,K)+U(I#IJ-1,K))
R=G*E*IU( I,J,K.1 )*U( I J,K-L))
S=GOUOLf)(ItIJvK)
UNEW*F4P*Q+R+S
DIFF=LJNEW-Ul I,J,K)

C
C ON THE FIRST ITERATION THE INITIAL VALUESS OF THE WEGSTEIN

C VARIABLES ARE SET UP BUT NO WEGSTEIN COMPUTATION IS DONE
IFI ITNUM-1)125,1259470

125 WOIFF(IIJ#K)nuDIFF
WU( IJtK)NUNEW
GO TO 102

C
C INPUT IAPPLY TELLS WHAT ITERATION WILL BE THE FIRST TO APPLY THE
C WEGSTEIN TECHNIQUE ON
470 IF(ITNUF4-IAPPLY) 4529450.450

C
C THE INPUT APPLY DETERMINES HOW OFTEN THE TECHNIQUE IS APPLIED
450 IF(COUNt-APPLY) 452,109,109
C
452 WDIFFII,J,K)*UNEW-WU(IJ,K)

WU( ItJtKI.UNEW
GO TO 102

C
C THE WEGSTEIN TECHNIQUE
109 IF(WDIFF(ItJ,K)I 709t2699709
709 WTESTaIJIFF/WDIFF(I#JvKl

IF(WTESTI 289,269,100
100 IF(hTEST-1.) 101@269t26g
101 WEGFAC=WTESt/(WTEST-1.3

C
C REJECT VALUES OF THE WEGSTEIN ACCELERATING FACTOR THAT ARE ABOVE
C A PRESET VALUE AND SET THE FACTOR EQUAL THE PRE SET VALUE

IF(ABSF(WEGFAC)-WNAXJ 453t453#454
454 WEGFAC=-WMAX

109.
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453 WUNEW=WEG;FAC.WU(IJK)+(I.-WEGFACJ*UNEW
WDIFF I I JIKJWUNEW-WU( I J@K)
WU(ItIJvK)aWUNEW
U(I IJK)zWUNEW

C
C TEST SOLUTIONS AGAINST ESTABLISHED CRITERIA

IFI ICHECK.)103,103, 116
103 IF(ABSF(WDIFF( IJK) )-ERR)lI691169105
105 ICHECKsI
116 IF(J1TkR-J) 110,110,290
110 IF(KITER-K) 112,112,290
112 IF(SENSE SWITCH 1)114,103
113 PUNCH 115,1 ,JKtWUNEWWCIFF(IJK),WTEST

GO TO 290
114 PRINT 115,1 ,JKWUNEWWOIFF( IJK),WTESF
115 FORMAT(5X,3l4,3EI4.8)

GO TO 290
289 U(IIJ#K)zUNEW

WDIFF( I,JtK)aUNEW-WU( I ,JK)
WU( I JK)zUNEW

290 IF(KTEST-KK) 481,481,480
481 GOUAT=0.0
480 IF(kWTEST-1.0) 2,107,107
102 U(ItJoK)=UNEW

IFI ICHECK) 106,106, 107
106 IF(ABSF(OIFFl-ERR)107vl07,118
118 ICHECKm1
107 IF(JITER-J)119tl1992
119 IF(KItEIR-K) 120,120,2
120 IF(SENSE SWITCH 1) 122,121
121 PUNCH 52#IJtKtUNEW9DIFF
52 FORMAT (SX,1492EI4.8)

GO TO 2
122 PRINT 5291,J,K,UNEWeDIFF
2 CONTINUE
C
C SET VALUES ONE GRID POINT BEYOND PLANES OF SYMMETRY

L-LASTX
DO 4 N-2tLASTZ
DO 4 M.2,LASTY

4 .JLPMPN)aU(L-2tMtNI
M-LASfY
00 5 L*2tLASTX
DO 5 NaZtLASTZ

5 UILp.MvN)sU(LtM-2*N)
NsLASTZ
DO 6 L*2@LASTX
00 6 Mm2,LASTL

Uo0
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6 UC LvM,'4) U( L9M#N-2)

C PRINT RESULTS OF ITERATION
IF( ITNUM-I) 1.1,150

ItO IF(ICHECK)1091O,1
10 IF(SENSE SWITCH 1)88987
87 PUNCH 60

'uO TO 89
88 PRINT 60
60 FORMAT (//l0Xt26HFINAL RESULTS OF ITERATION//)
BY9 00 7 K=29KLAST,KRITE

00 7 Jx2tJLASrJR[rlE
00) 7 1u29ILAST9IRITE
IF(SENSE SWITCH 1)91#90

90 PUNCH 1309IJt(,U(ItJtK)

91, PRINT 130,I.JtKU(IJ#K)
130 FORMAT (l0X93149E14.8)
7 CONTINUE
C
c. CHECK TOl SEE IF LAST TIr'E INCREMENT HAS BEENJ REACHED

IF( rMAX-IIE) 17,17t12

C PREPARE FOR A NEW TIME INCREMENT
12 D0 L5 I=2tLASTX

no LS J=2tLASTV
00 15 K*29LASTZ

15 UULD(ItIJK)aU(IJ*K)
GO TO 14

C
C. PRINT )UT INPUT I)ATA

Li IF(SENSE SWITCH 1 )94993
93 PUNCH 55,DIFUS9CONDOUELTvSORC

PUNCH 5iK6RIO9YGRID#ZGRID9TMAX,ERR
PUNLH 58,IRITEtJRITEtKRITEKITERJITCR
PUNCH 599IAPPLYtAPPLY9MAX
GO Tt; 13

94 PRINT 55tOIFUStCONDOELT*SORC
55 FOKMAT(IIHOIFFUSIVITYFIO.4t6XIZHCONOUCTIVITYFIO.4/

310HOELTA TIMEqFI0.4v6X,I5HSOURCC STRENGTHtF1O.4)
PRINT 57vXCRIDtYGRIO,ZGAlID, TMAXERR

5i FORMAT(/6HXGRI~OUFlO.4t6X,6MYGRIDUFIO.4,6X,6HZGRIOUFI0.4/
48HMAX TIMEFIO.4,ISHSTOP WHEN ASDIFF-oF10.5,15HIS ZERO OR LESS)
PRINT 58tIRITEJRITEKRITEtKITERJITER

59 FORMAT(/25HOUtPUT CONTRCLS ARE IRITEt13,ZX*5HJRITEt13/
55HKRITEtt3tiH KITER,13,H JITER, 13)
PRINT 541IAPPLY9APPLYtMAX

59 FORMAT f/THIAPPLYm,14,4X,6HAPPLY=,FlO.5,t4Xt4HMAXuFIO.5)
13 STOP

END
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C HLEAT TRANSFER IN CUBE-NCNSTEADY, CONSTANT SOURCE BY GAUSS SIEDEL
C WITH PROVISION FUR COMPUTING RELAXATION FACTOR AND WEGSTEIN DATA
C
L SPECIFY DIMENSIONED VARIABLES

DIMLNSION UC7,7,7hvUOLD(7,7,7) ,DIFF(7,7,7)

READ 619 LASTXtLASTYLASTZ
61 FCRMAT (313)

tEAD5rIIFJSCONDvDELT9SORC
53 rORMAT(4F10.O)

READ 54vERR, X(;RD9YGRIOZGRID, TMAX
54 FORMAT(5F10.0)

READ 56, IRI TEJRITE,KRI TF,JITER,KITER,CHOSE,8OUNDCARD.COMP
56 FORMAT(514,4F10.0)

R4EAD 124,ITSETCONVRG

124 FURMAT (13,FIO.O)
C
C SET BOU'JL)ARY VALUES

DO 3 IzjpLASTX
00~ 3 J=jLASTY
DO 3 K=1,LASTZ

C
C CHOOSE METHOD OF SFTTING INITIAL VALUES BY LETTING BOUND-0.0
C TO R[-Ai FROM CARD INPUT OR BOUNDzL.O TO SET ALL POINTS EQUAL ZERO

IF(BOUN)) 100,100,101
100 RIAL) 1029LJ(ItJoK)
L02 FOKMAT (E14.8)

UOLDCIJPK)=U(ItJK)
DIFF(I ,J,K)20.
GOt TO 3

101 U(LD(IpjgKR=0.O
D1FF CIJtK)z0.
01 IvJtKJ=O.0

3 ZOnNrINUE
GRELAX:0.
AVLA=0.O
WRELAX=0.0
POINTSz(LASTX-2) .1LASTY-2I*(LASTI-2)
ILASf=LASIX-1
JLAStaLASTY-1
KLAST=LASTZ-I

C
C WHEN APPLICABLE CAN TAKE INITIAL VALUES FROM PUNCHED OUTPUT BY
C USING CARD sO.0 OR-1.0 AND SETTING BOUND a 1.0

IF(CARD) 200,200P201
200 D0 202 Kz29KLAST
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1)0 202 J=2,JLAST
D0 202 I=2,ILAST

202 READ 203.U(I,J*K)
2U3 FORMAT I22XtE14.8)

L-LASTX
DO 210 N=2,LASTZ
no 210 M=2PLASTY

210 i( LoMN) =1)1L-2,M9NJ
MuLASTY
00 211 L=2tLASTX
00U 211 Ns2,LASTZ

211 U( LtM#N)uU(L,M-2oN3
N-L AS TZ
DO 212 Ls2,LASTX
DO 212 M=2,LASTZ

212 U(LtMtN)-U(LtM,N-2)
GSETA=0.0

C
C COMPUTE CONSTANTS
201 Aa(2./(X(;RID.'2) ).(2./(YGRID..2) )+(2./(ZGRII)*.2))

B=DIFUS*DELT
CzB/(XGRID**2)
0=8I IYGRIO**2)
Ezb/( LGRID*.2)
Gal./I 1.4B*A)
F-GOB.SORC/COND

C
C SET TIME STEPS AND ITERATION COUNTER

TIME=O.
14 rIME=TIME+DELT

I [NUM-O
ICOUNTso

C
C CHOOSE EITHER PUNCHED 0t4 PRINTED OUTPUT BY SETTING CHOSE-0*0
C FOR PUNCHED OUTPUT OR CHlOSE01.O FOR PRINTED OUTPUT

IF ICHOSE)80,809S1
80 PUNCH 50,TIME

GO TO I
81 PRINT 50,TIME
50 FORMATM/IHNEW TIME INCREMENT,F1O.3)
1 ITNUMmIrNUM*1

ICOUNT*ICoUNT41
TUTALA=0.0
TUTGSmO.O
IF (CHOSE 182,82,83

82 PUNCH 51,lTNUM
GO TO 84

03 PRINT 51,IrNUM

C51 FORMAT (/lSXtl6HITERATICN NUMBER914/1.
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C COMPUTATIONAL STEPS
84 1)0 2 Kx29KLASr

DO 2 J-2,JLAST
00 2 !=2gILASr
P-G.C*(u(!4LtJK)4U(I-1,JtK))
Q:(*U*(U(ItJ+1#KJ+U(11 J-1tK))
R-G*E*(U(ItJtK+13.UU,9J#K-1))
S=G*UOLIc IJ#K)
UNEW&F+P-Q.RS
IF(SFNSE SWITCH 1) 190,191

190 RUNCW=GRELAX.UNEW4(1.-GIRELAX).U(IJKj
UN E WRUNE W

191 DIFOLD=DIFF(IJ#K)
0l)FF( I JK)=UNEW-U( IJK)
IF(SENSL SWITCH 1) 116,08

98 IF(CUIMP) 240,240,241
240 rur(,S=rOr(SABSFtDIFFIIJtK))

GO TO 242
241 TOTGS=TOTGS+DIFHI.J#K)*.2
24 IFUITNUM-L) 116,116,196
196 IFUITSET-ICOUNT) 209209116
20 WTEST=OIFF(LJK)/DIFOLC

rOTALA= rOTALA.WTEST
WEGFAC=WTESr/(WTEST-1.)
IF(S(NSF SWITCH 2) 192,116

192 IFICHOSE) 750,750,751
750 PUNCH 95I1I9JtKtWTEST9WEGFAC

GO TO 116
751 PRINT 951,IJKWTESTWEGFAC
951 FORMAT (313t2E14.8)
116 IF(JITER-J) 110,110,2
110 IF(KITER-K)8,8,2
a IFICllOSE)8585p86
85 PUNCH 52, I9JvKqUNEWqDIFF(I ,JK)

;o0 to 2
86 PRINT 52,I9J9K9UNEWtDIFF( I,J,K)
2 U(IJvK)=UNEW

IF(ItSET-ICOU4T) 975,975,976
975 ICOUNTsO
c
C SET VALUES ONE GRID POINT BEYOND PLANES OF SYMMETRY
976 L=LASTX

DO 4 N-2tLASTZ
a)U 4 Ms2tLASTY

4 U(L#MvN)=UI L-2tM,N)
M=LASTY
DO 5 Ls2vLASTX
DO 5 Nw2tLASTI

5 U(L#MtN) =UltM-2,N)
N=LASTZ
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DO 6 La2tLASTX
00 6 M=2,LASTl

6 U(L,MN)=U(L,MN-2)
GUSDIF=SQRTF (TOTGS)
IF(SENSE SWITCH 1) 198t99

99 IF(ITNUM-I) 111,111,123
123 GSETAnGSOIF/GDENOM

ROLD=GRELAX
GRELAXm2.0/(1..SQKTF(1.-GSETA) I
AVEA*IOrALA/POINTS
,RELAXx2.O/(1.4SQRTF(I.-AVEA))

Ill 3DENOM*GSDIF
IFICHOSE) 243#243,244

243 PUNCH 181,GSETAGSOIlFGRELAXWRELAX,AVEA
GO TO 245

244 PRINT 1e1,GSeiTAGSDIFG;RELAXtWRELAXAVEA
181 FORMAT (8HGSETA t E14*892Xt9HGSOIFF a tE14.8,IZH GRELAX 9 E14.8

2,/IIH WRELAX t E14.894Xt7HAVEA a #Et4.8)
245 IF(SENSE SWITCH 3) 743,198
743 IF(ITNUM-I) 198,198,197
197 IF1ABSF(GRELAX-ROLl)1-CONVRG) 199,199,198
199 PRINT 180
180 FORMAT (5OIOVERRELAXATION FACTOR HAS MET CONVERGENCE CRITERIA/

232HSWI ON TO OVERRELAX, PRESS START)
PAUSE

C
c TEST SOLUTIONS AGAINST ESTABLISHED CRITERIA
198 DO 10 K=29KLAST

0O 10 Js2vJLAST
DO 10 1=291LAST
IF(ABSF(UIFF(I*JtKl) -ERRI 10,10,1

10 CONTINUE
C
c. PRINT RESULTS OF ITERATION

IF (CHOSE 187,87,88
87 PUNCH 60

GO TO 89
88 PRINT 60
60 FORMAT t//10X#26HFINAL RESULTS OF ITERATION//
89 D0 I Kx2,KLASTKAUTE

DO 7 Kz2,KLAST9KRITE
DO 7 J2JLASTtJRITE
DO 7 1=2tlLASTtIRITE
IFICHOSE 190,90,91
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90 PUNCH 52vIJvKU(IvJ9K),DIFF( IpJtKl
GO TO 7

91 PRINT 52oIvJKtUC IqjK)vDIFFIIJoK)
52 FORMAT(1OX#314#2EI4.8)
I CCJNTINUE

C CHECK TO SEE IF LAST TIIPE INCREMENT HAS BEEN REACHED
IF (TMAX-rIME) 17,17.12

C
C PREPARE FOR A NEW TIME INCREMENT
12 DO 15 1=2,LASTX

DO 15 J=2gLASTY
DO 15 K=29LASTI

15 UOU(I ,JtK)aU( IJK)
GO Tfl 14

C
L PRINT OUr INPUT DATA
17 IF(CHOSE)93,93.94
93 PUNCH 55oDIFUSvCONODELTtSORC

PUNCH SloXGRIDYGRIO.ZGRID#TMAXERR
PUNCH 58.IkrI EJRITEKRITEKITERJITERCHOSE
PUNLH 766,CONVRG
GO Tfl 13

94 PRINT 559DIFUStCONDoDFLTOSORC
55 FORMAT(L1HDIFFUSIVITVFI0.4,6X.IZHCONDUCTIVITY,FIO.4/

310HUJELTA TIMEF10.496XI5HSOURCE STRENGTH,FIO.4)
PRINT 57tX RID9YGRIOZGRIDvTMAXoERR

57 FORMAT( bXR~#I-tX6YR~u~O46tHGI~F04
48HMAX 1IME9FIO.4t1SHSTOP WHEN ABSDIFF-tEI4.8ol6h IS ZERO OR LESS)
PRINT 58, IRITEJRITEKRITEKITERoJITERCHOSE

58 FORMAT(/25tIOUTPUT CONTRCLS ARE IRIEt13#2Xv5HJRLTEtI3/
!,5HKRITE.I3. 2X, 5HKITER. 13, 2X ,5HJITER, 13, 2K, 5CHOSEtF6. 3)
PRINT 766,CONVRI

766 FORMAT (38H~WI1EN OMEGA(N4I) -OMEGAIN) IS LESS THANtE14.8/
253HSrOP COMPUrATION AND START OVERRELAXATIO4, IF DESIRED)

13 STOP
END

116.
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C
IC ANALYTICAL SOLUTION-3 DIMENSIONS, CONSTANT SOURCE
c,
C SPECIFY DIMENSIONED VARIABLES

DIMENSION AI3Oh#B(30) ,C(30)
C
C REAL) INPUT DATA

READ INPUT TAPE 2v60vLMAX,MMAX9NMAX
60 FORMAT(3131

READ INPUT TAPE 2.61.DIFUS, SORCCONDXMAXYMAXZMAX
61 FORMAT(6FI0.0)

READ INPUT TAPE 2962*DELXtDELYeDELLDELT
62 FORMAT(4FID0)

READ INPUT TAPE 2,63*TMAXXGRIDYGRIDtZGRID
63 FQRMAT14FIO.O)
C
C INITIALIZE AND SC! DESIRED TIME

TIME-O.
5 TIME=TIME.OELT

WRITE OUTPUT TAPE 3,51,TIME
51 FORMAT(/5X,ISHNEW TIME INCREMENT*FIO*5)
C
C PRINT COLUMN HEADER FOR RESULTS

WRITE OUTPUT TAPE 3953
53 FORMAT(//8XIHL,3X, IHM,3X.IHN,4X.IIHTEMPERATURE,9X4HI.C)

C
C
C COMPUTE CONSTANTS

VP 3. 14 15926
f=64.OOIFUS.SORC/tCOND.PI.PIePI)
E=DIFUS*PIePl
0O 32 I=LLMAX

32 A(I)aZ*(I-14.1
DO 33 Jul,MMAX

DOl 34 K-1,NMAX
34 C(K)22*(K-1).1

C INITIALIZE AND SET DESIRED XYZ

35 L-IDELZ

30 Y=YSDELY
X-0.

a XzXsDELX
TEMP*0.

C INITIALIZE SUMMATION VARIABLE FOR TEMPERATURE INCREMENTS
TINCuO.

C
C COMPUTE TEMPERATURE INCREMENTS
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DO 10 N=LNMAX
DOU 10 MS1.,MMAX
VU 10 L=19LMAX
F=A(L)*oZ/XMAX*.2,BIM)*.2/YMAX..2+CCN)..2/ZMAX..2
ALPHAzEeF
DENOM=ACL ) .IIM)*CCN)*ALPHA
P=A CL) PI *X/XM.AX
Q=(J=M) 'PA Y/YMAX
K=CCN)#PI.L/ZMAX
S=SINFCP)*SINFCQ)*SINF(R)
T=ALPHAS TIME

C RESTRICT EXPONENT TO PREVENT SURROUTINE OVERFLOW
IFCT-30.) 30392

2 V21.0
GO TO 6

3 V=1.-(1./EXPF~r))
6 TINC=D*S*V/DENOIA

c
C SUM TEMPE~RATURE INCREMEN~TS

TEMP=IEMiGT INC

C PRINT RESULTS WHEN DO LCOP INDICES ARE EQUAL FOR MONITOR ONLY
IFCL-M)1O,7,1O

7 IFCiv-N)10,1tt0
1 I=L-1

K-N-1
WRITE OUTPUT TAPE 39529ltJKPTEMPTINC

52 FORMATIC/5X, 314,2XE14.8,2XE14.8/)
10) CONTINUE

C
C PRINT FINAL RESULTS OF COMPUTATION

WRITE OUTPUT TAPE 3,64
64 rORMAT(/5XI3HF[NAL RESLLTS/J

WRITE OUTPUT TAPE 3t50tEvY#ZtTEMP
50 FORMATC'SXg2HXxFIO.4.AH YuoFlO.4t4H ZaFlO.4v3XSHTEMPavE14*8/)

C
C CHECK TO SEE IF LAST TIPE AND SPACE INCREMEN17S
C HAVE SEEN4 REACHED

IFfX(iRI0-X) 15,15,8
15 IFCYGRID-Y)20,20930
20 IFCIGRIO-1125925#35
25 IFITMAX-TIME)31,31,5

C
C PRINT OUT INPUT DATA FOR REFERENCE PURPOSES
31 LL*LMAX-1

MMUMMAX-1
4N.NMAX- 1
WRITE OUTPUT TAPE 39549LLMMNN

118.
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54 FORMAT(/5X925HMAXIMUM SUMMATION INOEXES,315)
WRITE OUTPUT TAPE 3,t5,C1FUS,SORC

55 FORMAT(/5XIIHDIFFUJSIVITYFIO.4t3XI5HSOURCE STRENGTMFIO.4)
idRIIE OUTPUT TAPE 3,569CONDXMAXeYMAX#ZMAX

56 FOfRMAr(/5Xtl2ICONUCTIVITYF9.4,3X,13HMAXIMUM XtytL,3FI0.S)
CALL EXIT
END)
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C HtAT TRANSFER IN CUBE-NCNSTEADY, CONSTANT SnURCE BY
L2 SUCCESSIVE OVERRELAXATICN
c

D1MkNSiOnJ UU7.7) UOLD(7,7) ,DIFF(17,77)

C READ INPUT DATA
K&LAU b19 LASTXtLASTY#LASTZ

61 FORMAT (313)
KEAD539[)IFUSCOND,DELT, SORC

53 FORMA[i4FI10)
REjAD 54,)ERRtXGRIDtYGRIDoZGRIDtTMAX

54 FflHMAr(SFIO.0)
RLAl) 56.IRI TEtJRITEKRITEJITERKITERCHSEBOUN)

56 FOI&MAT(514,2FI0.O)
REAU 59,I4FACT

59 FORMAT (E14.0)
C
C SET BOUNDARY VALUES

L)0 3 I'mloLASTX
0O 3 J21,LAStY
00 3 K=19LASTZ

C
C THE INPUT BOUND DETERMINES METHOD OF SETTING INITIAL
L. ESTIMATES OF TEMPERATURE( BOUND- 0.0 OR LESS AND READ
C ESTIMATE FROM CARDS, IF BOUND IS GREATER THAN ZERO ALL
C POINTS ARE SET TO ZERO)

IFhsOUNV) L0OI001ol1
100 REAL) 102tU(IoJ,K)
I(,2 FORMAT IEI4o83

UGLO I ,JtK)xU(I#IJK)
GU 10 3

101 UULD(1,JK)s0.o
U(I IJtK)=O.0

3 CONTINUE
C
C COMPUTE CONSTANTS

AzI2./(XGRID'.2)J.(2./(Y(RIDo.2))+(2./IIGRIDeeZ))
BzDIFUS*DELT

C-B/X(;ID#*2)
Dat3/( YGR 10.02)
EzB/IIGK 10*?)

F-G.B*SORC/COND
C
C SET TIME STEPS AND ITERATION COUNTER

tIME zQ*
14 IIMEsTIME*DELT

I TNUMO0
C
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C T~iE INPUT CHOSE DETERMINES WHETHER THE OUPUT IS PUNCHED
C OR PRINTED (SET CHOSE a 0.0 OR LESS FOR PUNCHED OUTPUT
C OR GREATER THAN ZERO FOR PRINTED OUTPUT)

IF(CHOSE )80#80981
80 PUNCH 50,TIME

GO Tn I
a1 PRINT 5O,TIME
50 FORMAT(/18HNEW TIME INCREMENTtFIO.3)
L ITNuM=ITNUM.1

IF(CHOSF 382t82,83
82 PUNCH 51,ITNUM

GO TO 84
83 PRINT 519ITNUM
51 FORMAT (/15X,16HITERATICN NUMBER.14/
C
C COMPUTATIONAL STEPS
84 ILAST=LASTX-1

J LAST' LAST Y-1
KLAST=LASTZ-1
DO 2 Ka2,KLAST
UO 2 J-2JLAST
O) 2 Iz2tILAST

Q'L,.D*(U(I I JqK )*U( I ,J1K))

R=G*EoI( I#J#K41 )*U( I,JpK-1 ))
S=G*UOLD( I ,JoK
UNEW=((FP+QR+S)*RFACT)+((I1.0RFACT)*UIJK3)
OIFF(I#J,K)xUNEW-U(ItJI()

C LJMPIETE OR PARTIAL OUTPUT OF TEMPERATURES CAN BE OBTAINED
C FOR EACH ITERATION BY PR~OPER CHOICE OF THE INPUTS JITER AND KITLER
116 IF(JITEf&-J3 110t110,2
110 IF(KITER-KJ8t8tZ
8 IFICHOSkHB5865,86
a5 PUNCH 52tIvJpKvUNEWvOIFF( I9J,K)

GO TO 2
86 PR4INT 52, I#JKUNEWDIFF( IvJtK)
52 F0RMAT(l0Xv314v2El4*8)
2 U(I#J#K)=UIEW
C
L SET VALUES ONE GRID POINT BEYOND PLANES OF SYMMETRY

L-LASTX
DO 4 Nm2,LASTl
DO 4 M=2,LASTY

4 U(LtM#N)UL-2,M,N)
MmLASTY

DO 5 LuZLASTX
DO 5 Nud,LASTZ

5 UILtMN)sU(L#M-2tN)
4aLASTZ

121.
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00 6 L=2tLASTX
00 6 M=29LASTZ

6 U(LtMPN)zU( L@MtN-2)
L
C TEST SOLUTIONS AGAINST ESTABLISHED CRITER~IA

00 10 Kz2tKLAST
U)1 jtU Jx2vJLAST
DO 10 I=ZIltAST.
IF(A8SF(O)IFF( IJK) )-ERR) 10,10,1

10 C.ONTINUE
C
c PR4INT RESULTS OF ITERATION

IF (CHOSL)87987988
87 PUNCH 6U

30) TO 89
88 PRINT 60
60 FORMAT (//10X,26HFINAL AESUCTS OF ITERATIONMI
89 DO I K=2tKI.ASTtKRITE

DO0 I J=29JLASTPJRITL
DO I 1 I29ILASTtIRITE
IF(ICHOSH9)0,90,91

90 PUNU-t 52,IJvKtU(ItJ,K) .DIFF( I#JpK)
GO TO 7

91 PR INT 52, I ,JvKU( I ,JK) .DIFF(I IJtK)
7 CONTINUE

C
C CHECK TO SEE IF LAST TIME~ INCREMENT HAS SEEN REACHED

IF(CTMAX-TIMC) 17,17.12
C
L. P,4EPAaE i-OR A NEW TIMF INCREMENT
12 00 15, lz2qLASTX

DO 15 J=2,LASTY
DOi 15 Kz2,LASTZ

15 UtL.O( I ,JK)-U(I IJvK)
Gu TO 14

C
C PRINT OUT INPUT DATA
17 IF(CtOSFI93093094
93 PUNCH 559DIFUSPCONOtUEL19S0RC

PUNCH 5lXGRIOtYGRIDZGRID, TMAXERR
PUNCH 53.IRITEPJRITEKRITEKITERJI TERCHOSE
PUNCH 62, Ri-ACT
GO TO 1.3

94 PRINT 55,DIFUStCflNO,OELToSORC
55 FORMAT(III4DIFFUSIVITYFIO.4t6XI2HCOIOUCTIVITYFIO.4/

31OHDELTA TIMEPF1O.496XI5HSOURCE STRENGTHFIO.4)
PRINT 57,KCRIOtYGRIDZGRIDtTMAX#ERR

57 FURMArI /61XGRIDUFIO.46X6HYGRIOrFIO.4,6X,6HZGRI~mFlO.4/
48HMAX TIME,FIO.4,I8HSTOP WHEN AOSIFF-oE.1*.6,16H IS ZERO OR LESS)

122.
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PRINT 5d.IRI rEJRITEKRIrEKIrERJITERCHOSE
58 FflRIAT (/25HOLUrPUT CONTRCLS ARE I R ITE,13#2XtbHJR IT Et13/

55HKRI TE, 13,2X, t4KITER, 13, 2K,5HJ1 TER, 13,2K, 5HCHOSE ,F6. 3)
PRINT 62, RFACT

62 FORI4AT(/22I4RELAXATION FACTOR USEDo3X#E14.8)
13 STOP

END

13.



c HEAT TRANSFt.&,cfNSTAFIT IITERNAL SOUCEt Two niMENSIOIS
cSOLUTION UY (.AUSS SILDEL WITrH SER2IAL SCA I

REPd) 1.4PUT TAPE 2,7O0,LASTXLASTVIIITEJRITEJI TEK
700 FGRYWAT (514)l

READ INP~UT TAPE5 2,701,i)IFUSCTJNDSORC,XGWilDYGR!D
7f; IFOR5MAT (5FL2.fla

RFAO lNPUl TAPF 2l7O2,TMAX,rELT,FRR
702 FORP.AT ( IF12.iu)

REM) INPUT TAPE 297O3,ttOUN09PITErt
103I FfCRIAT W2IC.fj)

C
C PR{INT UUT 14PUI UATA FOR REFERENCE PURPOSES

WHITE[ OUTPUJT TAPE 3,53,OELTSORC
53 F0R1MAr (1I1HUE-LTA TIfl.q~t6.0~~ STRENGTHzpFlO.&/)

WRITE OUTPUT TAPE 3,55,DIFUStCON)
55 FiW,.'Aff/12Hr)IFFUSIVITYzF1O.4t6X, 13HCC~JnUcTIVIrY=,Flo.4/)

WRITE OUTPUT TAPE 3,56
56 FJU4AT(/27liTflIS RUNIS 24) rp AUSS-SIEDEL/

WR[TE OUTPUT TAPE 3,57,XGIIID,YGRJD,TMAX
57 FORM~AT tHsli.zFQ.43X,6YGID~tFI0.4, 3X,9H AX TIME=,FIO.4/)

WHITE OUTPUT TAPE 3v589IRITEvJAITEtJITER
58 F-ORMAT Il4kiIAItr-I4*84 JRITE=z,I4t4H JlTfRr-,r4/)
C
r- IF J.OUIUD 7 C.t) O -1.09RLAI) INITIAL VALLILS AS INPUT QArA, QR IF
C 8001NU = l.0,SET ALL POINTS EQUAL ZERO.

O 3 J=ILASVY
DO 3 I=ltIASTX
it- (jflUUi 100,100,101,

100 FkEAF IN~PUT TAP~E 2, ?04,U(I ,J)
704 fUiiMAT F.C

PIT IH 1)=().Q
(0L1011,J )=U1IJ)
(,I' TO 3

101 ULDCI,1J)=0 .C
nI FP(I , J)=(. *u
uc I.J)=Q.ca

3 CONT VIUE

C COMPUTE CCNSTANTS
ILAS T=LAS TX-I
JLAST=LAS TV-I

~201 A=(2./IXOGRLD.2) J+I2./IYGRLD*Z)1
Bf)PIFUS*DELT
C=B/1 XGRIO..2)
D=ti/tYGIIO*2)
&1l./ C .4B*A)
F=G'Es.SORC/C0N)

C
C SET TIME STEPS AND ITERAl ION COUNTER

T IMF=O.
14 TIM[=TIME4CELT

I TNW~x0
WRITE OUTPUT TAPE 3v50,TIME

24.



50 FORiMAT(/8HNEh TIM~E INCREMENT,F1O.3)
I I TN.UM.ZjTNU.*1

c WHEN PRINI1NL OUT DATA EACH ITERAtICrJ SET PIFER z0.0,QA -1.0
C OTHERWISE SET PITER =1.0.

IF (PITER)' 3069306,84
306 WRITE OUTPUT TAPE 3,519ITNUM
51 FQRKMAT (/15Xh,16H1TERATION bIA.BER14I1

C
C COM4PUTATIONAL STEPS
84 DO 2 J=ZPJLAS1

DO 2 Iz2*ILAST
P:G.C*(U(I+1,J)+U(I-1,Jfl
(J=G.0.. I i IJ. I) 4Ut ,J-1))
S=G*UOLU( IJ)
UNEW=F.P+Q+S
D)IFR( IgJ)=UNEW-U( I#J)

116 IF(JITER-J) 110,110,2
110 WRITE OUTPUJT TAPE 3,52,I,J,UNEW,OIFR(1.J)
2 U(1,jl=UNL"
C
C. CHECK CONVERGiENCE (IF SOLUTION AGAINST ESTAeLISHED CRITERLA
29 DO 10 J=2#JLAST

DO 10 1=2,ILAST
IF(A8SF(UIFR( I,J) )-ERR) 10#10,1

10 CONTINUE
C
C, PRINT OUT FINAL RESULTS OF ITERATION

WRITE OUTPUT TAPE 3,60
WITlE OUTPUT TAPE 3ttiltITNUM
WRITE OUTPUT TAPE 3,54,ERR

54 ruugArj/34iSlaP ITERATION IF AESi((N*j)-T(N)-,E14.8l0H,- OR LESS)
60 FORMAT (//1HW FINAL RESULTS OF ITERATION//

WRITli LUTIeUT TAPE 3.602
602 FORMAT (4611 1 J TEMPERATURE DIFF#T(,N.1)-r(N))
89 CO 7 J=1,LASTYtJRITE

DO 7 I=1,LASTXtIRITE
7 WRLTE OUTPUT TAPE 3v52*I*J#ULIIJ)*DIFR(1.J)
52 FORMAT (214j4XvEl5.8,4XtEl5.8)

C
C IF OESIREOREAD IN NEW CONVERGENCE CRITERIA AND START WH4ERE LEFT O3FF

READ INPUT TAPE 29705vERR
*705 FORMAT (FIO.0)

IE'(10G.-EkiLl 30I2.300.300
300 WRITE OUTPOT TAPE 3,305,ERR

* 305 FUR.NAT(//27NW CONVERGENCE CRITERIA a tE14.8//)
GO TO L

C
C CHECK TO SEE IF LAST TIME INCREMFNT HAS BEEN REACHED
302 IFITkIA.-TIME) 17.17,12
12 DO 15 1-29LASTX

DU 15 JmZ.LASTY
15 UOLD(IJ)zU(I#J)

GO TO 14
C
17 CALL EXII

Iwo.
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C HEAT TRANSFER,CONSTANT INTERNAL SCURCE, TWO DIMENSION'S
C. SOLUTION BY 4GAUSS S1EL.EL WITH SPIMAL SCAN

DIMENSIOIN U(4l,4lIhUOLO(41,41) *DIFfR(4l,41)
READ~ INPUT TAPE 2,700tLASTX*LASTYf IRITEtJRITEJITER

700 FO]RMAT (514)
R~EADl INPUl TAPE 2,701,OIFUSCONDSORCAGRIDYGRID

701 FORM~AT (5FI2,O)
R~EAD) INPUT TAPE 2t702,TMA.XqQELTvE.R

702 FOR~MAT (3F12.O)
REAn INPUT TAPE 2970398OUND9PITER

703 FORMAT (2F10.0)
C
C PRINT OUT INPUT DATA FOR REFERENCE PURPOSES

WRITc OUIPUT TAPE 3953PDZLTPWAC
53 FORMAT (IliIOELTA TIME=,F1O.4,6X, I6FSOLRCE STRENGTh'=qFIO.4/)

6111 TE f.,'iTlUI TAPE 3 p55901IFUS C1Nr
51) Fn'uPA(/12HCLFUkSIVITY=tFl0.4t6K, 13ICNDUCTIVITY=,F13.4/)

T%1(ITLt CUTPUT TAPE 3956
56 FOltMAT(/44HTtiIS RUN IS 2D GAUSS-SIEDEL WITH FULL SPIRAL/)

WKITL OUTPUT TAPE 3*57tXGflD,YGB1Q.Tl0AX
57 FORmAT (6HXGRIID=,FIO.4, 3X.6HYGRID=,F1C.4. 3X,9HIMAX TIME=tFIO.4/)

WRITE OUTPUT TAPE 3#5dtIRITEtJRITE#JIJER
58 FLJRMAI (/6HIRITE=,1498Fl JRliI=t14,8H JITER=914/)

L
c IF~ H0I(ND = C.0. OR -1.0,REAl INITIAL VALUES AS INPUT DATA. OR IF
C EOUft'D = 1.09SET ALL POINTS EJ4JAL ZE~RO.

m.) 3 J=19LASTY
DU 3 I=1,LASTX
IV- (60UND) 1OU9100,ol1

100 READ INPUT TAPE 2t704tU(IJ)
704 FORMAT (F12.6)

DIER( 1,jj =0.0
IUjLOC I ,J)U( (I ,J)
GU, TO 3

101 IOL(IJ)=o.O
DIFR(I@J)=O.O
tJ( I J)=0.o

3 CONTINUE
C
L COMPUTE CONSTANTS

LAS r=LASTX-1
JLAsr=LASTY-1

201 A=(2./(XGRIU..21).(2./(YG410'.2))
B D IFUS *DEL T
C-Bl/IEGRID*.2)
DzP/LYGRIIJ**2)
G=l./I ..t3A)
F =G*kI.SORC/CONO

C
C SET TIME STEPS AND ITERATION COUNTER

TIME=O.
14 T114E=rlM'E+DELT

I TNUM=0
C

WRITE OUTPUT TAPE 3,50tTIME
2860



50 FORMAT(/18HNEW TIME INCREMENT,Flfl,3)
I, ZTtx4NUMZN+ I

r- WWOEN PALbNTI" OW- DATA iA"4 "-ERMION SE-T P-tT"- 7=40-91OR -"0.
C OTHERWISE SET PITER~ z 1.0.

IF (PITER) 106#306t84
306 WRITE OUTPUT TAPE 3,5lITNUM
51 FORMAT I/15X,16HkITERATLaN NUM&ER914/)

C
C. COMPUTATIONAL STEPS
84 11=1

J 4=2
IlI ILAST
JJJ=J.LAST
COUNT=0.0

30 CLIUNI =COUNT+1.O
IF(COUNT-1.0) 31,31932

31 J=JJ

GO TOI 34
32 IF(COUNT-2.0) 3303,36
33 111=111-1
45 J=JJJ
34 DO 35 1=119111

P=G*C*(U(1+1,J)4U(I-1,J))
Q=G*D*(Uf 1,41) tl .))
S=G.UCLO( I J)
UNEW=FtP40+S
0LFR( I ,J=UNEW-U( I J)

110 WRITE OUTPUT TAPE 3t52#IJUNEW901FR(I#J)
35 U11.J)=UNEW

JF(JI-III) 46,29,46
46 GU TO 30
36 IF(COIJNT-3.0) 37037038
37 1=11

JJ=JJi-1

JEND=JJJ
GO TO 39

38 1=111+1
JEND=JJJ* 1

39 00 44 J=JJJEND
PZG*C*(U(I+LJI*Ul-.J))
Q=GeU( I#J41).U(I,J-1))
S=G*UOLDI IPJ)
UNEW=FP4-0+S
DIFRU.IvJJ=UNEW-U(ItJ)

40 IF(JITER-J) 41#41944
41 bimITC OlUTPUT TAPE 3#52,1tJUb4EajoWR4Ij)
44 UIIJ)=UNEW

IF(COUNT-3.C) 30930,47
47 COLJNTsO.0

GO TO M0
C.
C. C)9EC.K CONIVERGENCE OF SO.LUTION' AGAINIST ESTABLISHE~D CRITEAIA
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29 D0 10 J=2tJLAST
au1.)0C L=.2.JLAST
IF(ABSF(OIFR(ItJ))-ERR) 10,10,1

10 CO-14TI NUE
C
C PRINT (JUT FINAL RESULTS OF ITERATION~

k-RITE OUTPUT TAPE 3t60
WR4ITE OUTPUT TAki 3,51.ITNUlM
WRITE OUTPUT TAPE 3,54,ERR

54 FORMAT(/34IISTrP ITERATION IF APS(T(N+11-TfN)-#E14.8t10HzC OR LESS)
60 FORMAT (//31H FINAL RESULTS nF JTERAfIflN//)

WRITE OUTPUT TAPE 3,602
602 fORMAT (46H1 1 J TEMPERATURE 0IFFqTVJ+1)-T(N))
89 U00 7 J=1#LASTY#JRITF

DO) I 11,LASTX,IRITF
7 WRITE OUTPUT TAPE 3,52tItJ9U(IJ),OIFM(IJ)
52 FORMAT (214q4XE15.894X,E15.8)

C IF DESIREIO,READ IN NELd CONVERGENCE rRITERIA AND START W14ERE LEFT OFF
READ INPUT TAPE 2,7O5,Ekl

705 FORMAT (FIU.C')
IF(I0O.-ERit) 3C2t300,000

3flC WRITE OUTPUT TAPE 3v305tERR
301 FOJRtAT(//27HNEW CLN~VERh;ENCE CRITERIA = E14.8//J

GO TO I
L
C CHECK TO SLE IF LAST TIMEF INCREMFNT HAS BEEN 1EACHED
302 IF(TMAA-TIt'iU 17,17,12
12 DO 15 1=2,LASTX

00 15 J=29LASTY
15 UOLD I9.1)=U( I ,J)

GC 10 14
17 CALL EXIT

END C (I * Ci *U i ,, 1 0,0, .0,, CiCi )

las.
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OVEKRELAXATIUN DATA RUN TIME a 0.2 SECH a 0.1 CMERR o 0005

NEW TIM[ INCREMENT .200

ITERATION NUMBER Im"odeon. res! dur,l
2 6 6 .l18356t2E+02 .11835672E+02
3 6 6 .18639951E+02 .L8639951E+02
4 6 6 .22405365E*02 .22405365E02
5 6 6 .24404534E.02 .24404534E402
6 6 6 .25423319E+02 .25423319E 02

ITERATION NUMBER 2

2 6 6 .l937496E402 .80018240E+01
3 6 6 .31652511E+02 .13012560E 02
4 6 6 .38395C91E+02 .15989726E+02
5 6 6 .42103991E+02 .17699457E 02
6 6 6 .43346459E 02 .17923140E+02

ITERATION NUMBER 3

2 6 6 .25360193E 02 .55226970E.01
3 6 6 .40854991E+02 .92024800E01
4 6 6 .50007493Ee02 .11612402E+02
5 6 6 ,54920496E02 .12816505E 02
6 6 6 .56663761E402 .13317302E*02

ITERATION NUMBER 4

2 6 6 .29337214E+02 .397?0210E 01
3 6 6 .47617934E 02 .67629430E*01
4 6 6 .S649337SE 02 .864858820E+01
5 6 6 .64348760E+02 .94282640E+01
6 6 6 .66207560E402 .95437990E.01

ITERATION NUMBER 5

2 6 6 .322586438Ee02 .29212240Ee01
3 6 6 .52541071E+02 .492313?OE+01
4 6 6 .64693040E.OZ .61996650E 0k
5 6 6 .71143600E02 .67948400EG01
6 6 6 .7327?410E.02 .70698500E 01

ITERATION NUMBER 6

2 6 6 .34390562Et02 .21321240E*01
3 6 6 .5615720?E+02 .36161360Ee01
4 6 6 069202630b+02 .4S095900E 01

12q
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5 6 6 .7617SC30E 02 .50314300E+01
6 6 6 .78357930E 02 .50805200E+01

ITERATION NUMBER 7

2 6 6 *35958S67E 02 .15684050E+01
3 6 6 .58782838E 02 .26256310E+01
4 6 6 .72517520E+02 .33148900E+01
5 6 6 .79789910E+02 .36148800E401
6 6 6 982129770E 02 .37718400E 01

ITERATION NUMBER 8

2 6 6 .37093114E 02 .113414OE01
3 6 6 .60712752E 02 .19299t4OE O
4 6 6 .74915920E 02 .23984000E+01
5 6 6 ,82479230E 02 .26893200E 01
6 6 6 .84836000E 02 .27062300E 01

ITERATION NUMBER 9

2 6 6 .37930510E 02 .83739600E 00
3 6 6 .62109970E402 .13972180E O1
4 6 6 .76687140E+02 .17712200E 01
5 6 6 .84398650E 02 .19194200E+O0
6 6 6 .86847700E+02 .20117000E+01

ITERATION NUMBER 10

2 6 6 .38532838E.02 .60232800E+00
3 6 6 .63139090E02 .10291200E01
4 6 6 .77958190E+02 .12710SOOE.01
5 6 6 .85836100E02 .14374500E+01
6 6 6 .88286590E02 .14388qO0E 01

ITERATION NUMBER 11

2 6 6 .38980282E+02 .44744400E 00
3 6 6 .63880680E+02 .74179000E 00
4 6 6 .7B908140E+02 .94995000E+O0
5 6 6 .8685170E.02 .10190700E01
6 6 6 .89361170E 02 .10745800E+01

ITERATION NUMBER 12

2 6 6 .39299367E 02 .31908500E+O0
3 6 6 .64432660E02 .55178000E 00
4 6 6 .?9S80200E 02 .67206000E00
5 6 6 .87623640E02 .76847000E+00
6 6 6 ,90125210E 02 ,?6404000E00
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ITERATION NUMBER 13

2 6 6 .3954021LE*02 .24090400E 00
3 6 6 .64824630E+02 .39197000E+00
4 6 6 .800O0450E+O2 .51025000E 00
5 6 6 .88164880E+02 .54124000E00
6 6 6 .90700150E O2 .5749400UE 00

ITERATION NUMBER 14

2 6 6 o39707595E402 .16732400E00
3 6 6 .65121470E 02 .29684000E00
4 6 6 o80445510E+02 .35506000E 00
5 6 6 .885755?OE002 .41064000E+00
6 6 6 .91105250E+02 .40510000E 00

ITERATION NUMBER 15

2 6 6 .39838593E+02 .13099800E+O0
3 6 6 .65328000E 02 .20653000E 00
4 6 6 .807L9400E 02 .27389000E 00
5 6 6 .88862960E+02 .28744000E+00
6 6 6 .91413090E+02 .30784000E 00

ITERATION NUMBER 16

2 6 6 .39925239E+02 .86646000E-01
3 6 6 .65467780E+02 .15978000E00
4 6 6 o80907200EOZ .LS780000E 00
5 6 6 .8qo82480EO2 .21952000E+00
6 6 6 .91627760EOZ .21467000E 00

ITERATION NUMBER 17

2 6 6 .39997249E+02 .72010000E-01
3 6 6 .65596810E02 .10903000E00
4 6 6 .81054130EOZ .t4693000E*00
5 6 6 .B9235080E4OZ .15260000E+O0
6 6 6 .9179260E.02 .16493000E O0

ITERATION NUMBER 18

2 6 6 .40041580E 02 .44331000E-01
3 6 6 ,65662530E 02 .BS?20000E-01
4 6 6 .sOLS3440E*02 .993LOOOOE-01
S 6 6 .89352440E*02 .LL?36000E+O0
6 6 6 .91906360E02 .11367000E00
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ITERATION NUMBER 19

2 6 6 .400SL412E.O2 .39832000E-01
3 6 6 *65740310E+O2 .57780000E-0I
4 6 6 *81232300fr402 .78860000E-01
5 6 6 *89433450E402 .81010000E-01
6 6 6 .91994770E+02 .88410000E-0I

ITERATION NUMBER 20

2 6 6 *4O103881E+O2 .22469000E-01
3 6 6 .65786110E+02 .45800000E-OI
4 6 6 .81284740E+02 .52440000E-O1
5 6 6 .aq4q620oE,02 .62750000E-01
6 6 6 9920S4930E+02 .60160000E-OI

ITERATION NUMBER 21

2 6 6 .401.25995E+02 .22114000E-01
3 6 6 .65816810E.02 .30760000E-01
4 6 6 .81327140E+02 .42400000E-OI
5 6 6 .895392OQE+02 .43000000E-OL
6 6 6 *92102350E.02 .47420000E-0I

ITERATION NUMB~ER 22

2 6 6 .40137283E.02 .11288000E-01
3 6 6 .65841240E+02 .24370000E-01
4 6 6 .81354770E+02 .27630000E-OI
5 6 6 .89572760E402 .33560000E-OI
6 6 6 .92t34160e4OZ .3t810000E-OI

ITERATION NUMBER 23

2 6 6 o40149585E.02 .12302000E-OI
3 6 6 .65857690E+02 .16450000E-0I
4 6 6 .81377620E+02 .228S0000E-OI
5 6 6 .89595570E+02 .22810000~E-01
6 6 6 .92159600E402 .25440000E-O1

ITERATION NUMBER 24

2 6 6 .40155211E+02 .56260000E-02
3 6 6 .658?0600E.O2 .12910000f-O1
4 6 6 *81392120E+02 .14500000E-01
5 6 6 .896t3520EeOZ .17950OOE-OI
6 6 6 .921?6410E4O2 .16610000E-O1
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ITERATION NUMBER 25

2 6 6 .40162044E+02 .68330000E-02
3 6 6 .65879430E+02 .88300000E-OZ
4 6 6 oB1404490E+02 .L2370000E-01
5 6 6 .89625630E+02 .1,21100OOE-01
6 6 6 9q21.9OC8OE,02 .13670000E-OI

ITERATION NUMBER 26

2 6 6 .40164849E+02 .28OSOOOOE-02
3 6 6 *65886260E.O2 .68300000E-02
4 6 6 .81412050E+02 .75600000E-02
S 6 6 o89635220E.OZ .95900000E-02
6 6 6 .92198960E4OZ .88800000E-02

ITERATION NUMBER 27

2 6 6 .40168617E+02 .3?680000E-02
3 6 6 .65891COOE+O2 .474000O0E-02
4 6 6 .81418780EG02 .67300000E-O2
5 6 6 e89641660E+O2 .64400000E-02
6 6 6 u92206290E*OZ .73300000E-02

ITERATION NUMBER 28

2 6 6 .401?OCZBE.02 .14110000E-02
3 6 6 .65894620E+02 .36200000E-02
4 6 6 *814Z2690E402 .391OOOOOE-OZ
5 6 6 .89646760E+02 .51000000E-02
6 6 6 .92210980EeO2 *46900000E-02

ITERATION NUMBER 29

2 6 6 .40172096E+02 *20680000E-02
3 6 6 .6589?ISOEeOZ .25300000E-O2
4 6 6 *81426350E.02 .36600000E-02
5 6 6 .89650210E.O2 .34500000E-OZ
6 6 '8 .92214920E+02 .39400000E-OZ

FINAL RESULTS OF ITERATION
node temperature residual

2 2 2 .1133?48?E.OZ .22420000E-02
3 2 2 *161956?SE+O2 .19200000E-03
4 2 2 e18495888E.O2 .20890000E-02
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5 2 2 .19558123E+02 .61000000E-04
6 2 2 .1987ldl9E+O2 *16750000E-02
2 3 2 .16195676E+02 .187OOOOOE-03
3 3 2 .2407684?E*02 .79000000E-03
4 3 2 .28071184E+02 .77900000E-03
5 3 2 .299~83233E+02 .1178OOOOE-02
6 13 2 .30552516E+02 .94500000E-03
2 4 2 .18495887E+02 .20860000E-02
3 4 2 .28071L86E+02 .71900000E-03
4 4 2 .33137749E+02 .23800000E-02
5 4 2 .35623870E+02 .942000OOE-03
6 4 2 *363735OOE+O2 .21360000E-O2
2 5 2 l19558125E+02 .61000000E-04
3 5 2 .2998323LE+O2 .i1720000E-02
4 5 2 .35623872E. O2 .94600000E-03
5 2 .38433894E4OZ .17440000E-02
6 5 2 .39286017E+02 .12150000E-02
2 6 2 .19871821E+02 .16?60000E-O2
3 6 2 .30S52516E+02 .94400000E-03
4 6 2 .36373503E+02 .21390000E-02
5 6 2 .39286017E+02 .12130000E-02
6 6 2 .40172094E+02 .20640000E-02
2 2 3 .16195675E+02 .188OOOOOE-03
3 2 3 .24076848E+02 .79200000E-03
4 2 3 .2807L187E402 .78200000E-03
5 2 3 .29983231E+02 .11730000E-02
6 2 3 *30552520E.02 .95200000E-03
2 3 3 o24076848E+02 .79300000E-03
3 3 3 *37132153E4OZ .12610OOO-O2
4 3 3 .44140288E+02 .16250000E-02
5 3 3 .47593100E+02 .17370000E-OZ
6 3 3 .48633861E+02 .18450000E-02
2 4 3 .28O?118?E.O2 .?8000000E-03
3 4 3 .44140283E+02 .16160000E-O2
4 4 3 .53091383E+02 .18840000E-02
5 4 3 .57599982E+02 .22970000E-02
6 4 3 .58972680E+02 .2L910000E-O2
2 5 3 o2998323ZE.O2 ..LIY30000E-02
3 5 3 *47593105E4OZ .17460000E-02
4 5 3 .575999SIE402 .Z2940000E-02
5 5 3 *62705980E.O2 *24100000E-O2
6 5 3 064270530E+02 .25600000E-02
2 6 3 .3055251?E.OZ .94400000E-03
3 6 3 o48633858E*O2 .IS410000E-02
4 6 3 *589?Z6?6E4OZ *21850000E-02
5 6 3 *642?0530E.O2 .2SSOOOOOE-02
6 6 3 o6589?140E.O2 o2510bOOO6-02
2 2 4 .1849588?E*02 .20900000E-O2
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3 2 4 .28071185E+02 .T7900000E-03
4 2 4 .33137748E+02 923770000E-02
5 2 4 .35623870E+02 .94500000E-03
6 2 4 .36373500E+02 .21320OOO-O2
2 3 4 .28071185E+02 .77900000E-03
3 3 4 .44140289E+02 .16230000E-02
4 3 4 .53091380E+02 .18120000E-02
5 3 4 .575qqq85E+02 .2299OOOOL-Oz
6 3 4 .58972683E.02 .21930000E-02
2 4 4 .33137744EeO2 *237LOOOOE-O2
3 4 4 *53091381E4O2 .18890000E-02
4 4 4 .64588170E402 .34500000E-02
5 4 4 .70494550E+02 .25200000E-02
6 4 4 .723L0C30E.OZ .34800000E-02
2 5 4 .35623874E+02 .95100000E-03
3 5 4 o57599976E+O2 .22810000E-02
4 5 4 .7o4q455oE+o2 .25200000E-02
5 5 4 .77l98940E.02 .32400000E-02
6 5 4 .79270100E+02 *29800000E-02
2 6 4 .36373498E+02 .21300000E-02
3 6 4 .58972678E+02 .21890000E-02
4 6 4 *72310C20E402 .347O0OOO-O2
5 6 4 .79270690E+02 .29700000E-02
6 6 4 .81426340E+02 .36400000E-02
2 2 5 *19558725Eo02 o63000000E-04
3 2 5 .29983231E4OZ lL130000E-02
4 2 5 .35623f670E*OZ .94400000E-03
5 2 5 .38433898E402 .175ZOOOOE-02
6 2 ,5 .39286C16E+OZ .12130000E-02
2 3 5 .29983233E+02 .117?000E-02
3 3 5 *47593105E*02 L17430000E-02
4 3 5 *57549985E+02 .22990000E-02
5 3 5 .62705970E*OZ .23900000E-02
6 3 5 .64270530E+02 .25800000E-02
2 4 5 .35623a74E*02 .951OOOOOE-03
3 4 5 .5759997?E02 .22840000E-O?
4 4 5 .?0494550E.O2 .2S2000O0E-02
5 4 5 *7719894OE+O2 .32400000E-O2
6 4 5 *792?0100E4O2 *29800000E-02
2 5 5 .38433898EG02 .17490OOO-O2
3 5 5 *627O598OE+OZ *Z41OOOOOE-02
4 S 5 .771q694oE+oZ *32S00000E-02
5 5 5 .S48t867OE.OZ .331000OOE-02
6 5 5 e87116380E4O2 .363000006-02
2 6 5 *39286018E*OZ .1215OOOOE-02
3 6 5 .64270530E+02 .25SOOOOOE-02
4 6 5 .79270680E+02 .29500000E-02
5 6 5 *87166370E+OZ o362O0OOO-O2
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6 6 5 .89650210E+02 .34500000E-02
2 2 6 .198lk821E+02 .16770000E-02
3 2 6 .30552519E+02 .95000000E-03
4 2 6 *363735O1E.02 .21340000E-02
5 2 6 .39286017E+02 .12160000E-02
6 2 6 *4Ol72C98~EO2 .20700000E-02
2 3 6 .3055?517E.02 .q4400000E-03
3 3 6 .48633865E+02 .185100O0E-02
4 3 6 *58972679E#O2 .21840000E-02
5 3 6 .64270530E+02 *258O0OOk-02
6 3 6 .6589?130E.OZ .2490O00O-02
2 4 6 .36373502E+02 .21370000E-02
3 4 6 .58972683E402 .21930000E-02
4 4 6 .7231OC30E.02 .34800000E-02
5 4 6 .79270100E*02 *29800000E-02
6 4 6 *81426340E.02 .36400000E-02
2 5 6 .39286018E+02 oL2150000E-02
3 5 6 *64270530E*02 .258000OOE-02
4 5 6 .79270680E+02 .29500000E-02
5 5 6 .87186370E+02 .36200000E.-02
6 5 6 .89650210E+02 .34400000E-02
2 6 6 .40172C96E+02 .20680000L-02
3 6 6 .65897150E+02 .25300000E-02
4 6 6 *81426350E+02 .36600000E-02
5 6 6 .89650210E+02 .34500000E-02
6 6 6 .92214920E+02 .39400000k-02

DIFFUSIVITY 1.0000 CONDUCTIVITY 100000
DELTA TIME .2000 SOURCE STRENGTH 2000.O000

XGRID= .1000 YGRIDm .1000 ZGRIOz .1000
MAX TIME .2000STOP WHEN AdSDIFF- .50000000E-02 IS ZERO OR LESS

OUTPUT CONTROLS ARE IRITE 1 JRITE 1
KRJT( 1 KITER 6 AITER 6 CHOSE 0.000
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DATA RUN GAUSS SIEDEL T=0*2 SEC ERR=0.005 H = 0.1

NEW TIME INCREMENT .200

ITERATION NUMBER 1
temperature residual

2 6 6 949352900E+01 *49352900E O1
3 6 6 *61509471E 01 961509471E+01
4 6 6 *64493826E+01 ,64493826E+01
5 6 6 .65222818E+01 *65222818E+01
6 6 6 o65399740E+01 965399740E 01

ITERATION NUMBER 2

2 6 6 .88801862E 01 *39448962E 0]
3 6 6 *11733575E+02 .55826280E+U1
4 6 6 .12595459E+02 .61460770E+01
5 6 6 *12844798E+02 *63225170E+01
6 6 6 *12909294E+02 ,63693200E 01

ITERATION NUMBER 3

2 6 6 ,12185228E+02 *33050420E+01
3 6 6 *16783346E+02 .50497710E+01
4 6 6 *18385662E+02 *57902030E+01
5 4 6 ,18910285E+02 *6065487.0E+01
6 6 6 *19052105E+02 *61428110E+01

ITERATION NUMBER 4

2 6 6 o15032849E+02 .28476210E+01
3 6 6 921351303E 02 *45679570E+01
4 6 6 923794226E+02 954085640E+01
5 6 6 .24671974E+02 *57616890E+01
6 6 6 *24916819E 02 .58647140E+01

ITERATION NUMBER 5

2 6 6 ,17527906E+02 *24950570E+01
3 6 6 92548e91E+02 *41349880E+01
4 6 6 *28814165E+02 *50199390E+01
5 6 6 ,30098025E+02 954260510E+01
6 6 6 930464459E+02 *55476400E+n1

ITERATION NUMBER 6

i*7.
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2 6 6 919736819E+02 .22089130E+01
3 6 6 o29231800E+s02 *37455090E+01
4 6 6 o3345O971E+02 *46368060E+01
5 6 6 *35171236E+02 o50732110E+ol
6 6 6 *35670706E+02 *52U62470E.O1

ITERATION NUMBER 7

2 6 6 *21705484E+02 *19686650EO1
3 6 6 *32626222E+02 *33944220E+01
4 6 6 .37718101E+02 *42671300E+0.1
5 6 6 939886695E+02 *47154590E+O1
6 6 6 *40524592E+02 *48538860E+Ul

ITERATION NUMBER 8,

2 6 6 *23467933E.02 *17624490E+O1
3 6 6 *35703599E+02 930773770E+01
4 6 6 .4163?842E+O2 #39157410E+01
5 6 6 *44248880E.O2 943621850E+01
6 6 6 *45025903E+02 .45013110E+O1

ITERATION NUMBER 9

2 6 6 *25050775E+O2 *15828420E+01
3 6 6 938494323E+02 927907240E+0(1
4 6 6 *45219152E+02 935853100E+01
5 6 6 .48268970E+02 *40200900E+01
6 6 6 949182403E+02 *41565000E+O1

ITLRATION NUMBER 10

2 6 6 o26475626E+02 *14248510E.O1
3 6 6 e4102564JE.02 925313180E+01
4 6 6 948496204E+02 *32770520E+O1
5 6 6 *51962594E+O2 *36936240Ee01
6 6 6 *53007382E+02 *38249790E.O1

ITERATIONI NUMBER 11

2 6 6 o27760516E.02 *12848900E+o1
3 6 6 *43322061E+02 *22964200E+O1
4 6 6 *51487394E+02 #29911900E+01
5 6 6 955348087E+02 .33854930E+01
6 6 6 956517688E+02 o3S103060E.01
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ITERATION NUMBER 12

2 6 6 o2b92O777EeO2 *11602610E+O1
3 6 6 945405671E+02 *20836100E+O1
4 6 6 *54214692E+02 o27272980E+01
5 6 6 *58445213E+02 *30971260E+O1
6 6 6 *5973.'212E+02 *32145240E+O1

ITERATION NUMBER 13

2 6 6 929969620E+02 s10488430E+01
3 6 6 .472964C6E+02 *189U7350E+01
4 6 6 *56699244E+02 *24845520E+O1
5 6 6 *61274204E+02 *28289910E+O1
6 6 6 *62670778E+O? *29385660E+01

ITERATION NUMBER 14

2 6 6 930918556E+02 *94893600E+O)
3 6 6 *49012283E+02 o17158770E.O1
4 6 6 .58961106E+02 *2?618620EO1
5 6 6 963855123E+02 *25809190E.01
6 6 6 o65353378E+O2 *26826000E+O1

ITERATION NUMBER 15

2 6 6 *31777684E+02 985912800E+00
3 6 6 *50569593E+02 915573100E+01
4 6 6 e61019115E+02 e20580090E.O1
5 6 6 966207443E+02 *23523200E+O1
6 6 6 *67799611E+02 o24462330E+O1

ITERATION NUMBER 16

2 6 6 932555933E+02 o77824900E+O
3 6 6 *51983078E+02 914134850E+01
4 6 6 *62890829E.02 *18717140E.O1
5 6 6 *68349745E+02 921423020E+01
6 6 6 *70028350E+02 *22287390E+OI

* ITERATION NUM4BER 17

2 6 6 933261224E+02 e7O5291OOE+OO
*3 6 6 953266087E+02 912830090E+01

4 6 6 *64592516E+02 *17016870E.O1
5 6 6 *7Q29Q569E+O2 o19498240E+O1
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6 6 .72057505L+02 .20291550E+01

ITERATION NUMBER 18

2 b 6 *339UO624E+02 *63940000E+U
3 6 6 *,4430714E+02 *11646270E+01
4 6 6 ,66139197E+02 ,15466810E+01
5 6 6 972073311E+02 *17737620E 01
6 6 6 *73903912E+02 *18464070E+01

ITERATION NUMBER 19

2 6 6 *34480452E+02 ,57982800E+00
3 6 6 955487917E+02 910572030E+01
4 6 6 967544674E+02 e14054770E+01
5 6 6 *73686290E+02 *16129590E+01
6 6 6 *75583279E+02 916793670E+01

ITERATION NUMBER 20

2 6 6 935006383E+02 o52593100E+00
3 6 6 *56447635E+02 *95971800E+00
4 6 6 o68821617E+02 *12769430E+01
5 6 6 975152556E+02 914662660E+01
6 6 6 .77110165E+02 *15268860E+01

ITERATION NUMBER 21

2 6 6 *35483510E+02 947712700E+00
3 6 6 .57318872E+02 ,87123700E+00
4 6 6 *69981606E+02 *11599890E+01
5 6 6 ,76485135E+02 913325790E+01
6 6 6 o78498025E+02 *13878600E+01

ITERATION NUMBER 22

2 6 6 *35916428E+02 *43291800E+00
3 6 6 958109802E+02 *79093000E+00
4 6 6 *71035240F+02 910536340E+01
5 6 6 ,77695965L+02 912108300E+01
6 6 6 979759219E+02 912611940E+01

ITERATION NUMBER 23

2 6 6 936309280E+02 *39285200E+00
3 6 6 *58827842E+02 ,71804000E+00
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4 6 6 *71992185E+02 o95694500E+CO
5 6 6 *78795996E.02 011000110E+01
6 6 6 @80905099E+02 *11458800E+O1

ITERATION NUMBER 24

2 6 6 *36665808E.02 *35652800E+0C
3 6 6 *59479710E+02 *65186800E+OO
4 6 6 *72861239E.02 *86905400E+OO
5 6 6 *79795230E+02 *99923400E.OO
6 6 6 *81946054E+02 *10409550E+O1

ITERATION NUMBER 25

2 6 6 936989397E+02 *32358900E+OO
3 6 6 *60071513E+02 959180300OE+00
4 6 6 *7'A65O439E+O2 *78920000E+OO
5 6 6 980'702814E+02 *90758400E+OO
6 6 6 *82891585E+02 994553100E+00

ITERATION NUMBER 26

2 6 6 o37283106E+02 o29370900E.OO
3 6 6 960608790E+02 *53727700E+OO
4 6 6 o74367081E+O? *71664200E+OO
5 6 6 o8l527080E.O? *82426600E+OO
6 6 6 *8375O351E.O2 985876800E+00

ITERATION NUM4BER 27

2 6 6 *37549710E+O? 926660400E+00
3 6 6 961096567E+02 948777700E+00
4 6 6 *75017817E+O? *65073600E.OO
5 6 6 *82275630E+02 974855000E+00
6 6 6 *84530266E.02 977991300E+00

ITERATION NUMBER 28

2 6 6 *37791716E+02 924200600E+00
3 6 6 o6l539409E.02 944284200E+00
4 6 6 *75608685E+02 *59086800E+OO
5 6 6 *82955381E.02 *679?5100E+OO
6 6 6 *85238512E+02 *70824600E+OO

ITERATION NUMBER 29

141.
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2 6 6 *38011403E+02 @21968700E+00
3 6 6 *61941450E.02 o40204100E+00
4 6 6 976145185E+02 953650000E+00
5 6 6 *83572632E+02 o61725100E+OU
6 6 6 985881652E+02 *64314000E+UQ

ITERATION NUMBER 30

2 6 6 *38210836E+02 ol9943300E+O0
3 6 6 *62306459E.O? *36500900E+00
4 6 6 976632308E+02 *48712100E+O0
5 6 6 *841331O7E+02 o56047500F+O0
6 6 6 *86465647E+02 o58399500E+OO

ITERATION NUMBER 31

2 6 6 *3839 1882E+02 91810460dE+OU
3 6 6 962637847E+02 933138800E+00
4 6 6 *77074589E+02 *44228100E+O0
5 6 6 *84642014E+02 *50890700E+OU
6 6 6 .86995924E+02 *53027700E+0O

ITERATION NUMBER 32

2 6 6 o38556245E+02 ol6436300E+0O
3 6 6 *62938702E.02 930085500E+00
4 6 6 .77476153E+02 *40156400E+00
5 6 6 *85104090E+02 *46207600E+O0
6 6 6 .87477400E+02 *48147600E+uO

ITERATION NUMBER 33

2 6 6 938705457E+02 *14921200E+00
3 6 6 P63211850E+02 o27314800E+QO
4 6 6 977840747E+02 936459400E+0O
5 6 6 *85523636E+02 *41954600EO00
6 6 6 *87914566E+02 *43716600E+OO

ITERATI.ON NUM13ER 34

2 6 6 *38840922E+02 o13546500E.0O
3 6 6 *63459835E+02 *24798500E.0U
4 6 6 *78171769E+02 o33102200E.OO
5 6 6 *85904559E+02 *38092300E+OU
6 6 6 *86311493E+02 939692700E+00
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ITERATION NUMBER 35

2 6 6 *38963905E+02 *122983OO +OO
3 6 6 *63684976E+02 o22514100E.OO
4 6 6 *7b472308E+02 *30053900E+OO
5 6 6 86250416E+02 o34585700E.OO
6 6 6 *88671880E+02 *36038700E+OO

ITERATION NUMBER 36

2 6 6 939075556E.02 911165100E+00
3 6 6 *63889382E+02 *20440600E.OO
4 6 6 *78745170E+02 *272862OOE+OO
5 6 6 986564423E+02 *31400700E+OO
6 6 6 .88909084E+02 *32720400E+OU

ITERATION NUMBER 37

2 6 6 o39176923EirO2 *10136700E+OO
3 6 6 @64074960E+02 *18557800Ee00
4 6 6 *78992909E+02 o24773900E.OO
5 6 6 *66849521E.02 9285U9800E+OU
6 6 6 989296165E+02 *29708100E.OO

ITERATION NUMBER 38

2 6 6 939268951E+02 *92028000E-O1
3 6 6 *64243445E.O? *16848500E.OO
4 6 6 o79217827E.02 922491800E+00
5 6 6 987108364E+02 *25884300E+OU
6 6 6 *89565886E.02 *26972100E+OO

ITERATION NUMBER 39

2- 6 6 939352499E+02 983548000E-01
3 6 6 o64396410E+02 o15296500E+OO
4 6 6 *79422030E+02 *20420300E+OO
5 6 6 *87343369E+02 923500500E+00
6 6 6 *89810770E+02 *244884OOE.OO

ITERATION NUMBER 40

2 6 6 *39428353E+02 *75854000E-OI
3 6 6 *64535285Ee02 ol3887500EO00
4 6 6 *79607429E+02 918539900E+00
5 6 6 *87556710E+O2 *21336100E+00
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6 6 6 *90033097E+02 o222327.UOE+OU

ITERATION NUMBER 41

2 6 6 *39497219E+02 *68866000E-O1
3 6 6 964661367E+02 *12608200E+OO
4 6 6 *79775748E+02 @16831900E+Ou
5 6 6 *8775O442E+02 *19371200E+OU
6 6 6 o90234955E+02 o20185800E+OO

ITERATION NUMBER 42

2 6 6 *39559741E.02 *62522000E-O1
3 6 6 964775836E+02 *11446900E+OO
4 6 6 .79928569E+02 *15282100E+0U

5 6 6 o87926315E+02 o17587300E+OO

6 6 6 #90418219E+02 *18326400E+OO

ITERATION NUMBER 43

2 6 6 *39bl65O4E+02 *56763000E-01
3 6 6 *64879765E+02 *10392900E+Ou
4 6 6 *80067315E+02 913874600E+Ou
5 6 6 eU8085990E+02 o15967500E.OO
6 6 6 *905e4608E+02 *166389OOE+OO

ITERATION NUMBER 44

2 6 6 *39668038E+02 *51534000E-O1
3 6 6 *64974121E+02 994356000E-01
4 6 6 *80193279E+02 ol2596400E+OO
5 6 6 *882,30956E+02 *14496600E+0O
6 6 6 o90735667E+02 *15105900E+OO

ITERATION NUMBER 45

2 6 6 *39714828E+02 *46790000E-O1
3 6 6 965059780E+02 985659000E-0O1
4 6 6 *80307644E+02 *11436500E+OO
5 6 6 *88362575E+O2 *13161900E+OO
6 6 6 *908728-21E+02 *13715400E+OO

ITSRATION NUMBER 46

2 6 6 939757305E+02 *42477000E-O1
3 6 6 e65137556E+02 *77776000E-O1
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4 6 6 *8 0411472E+02 *10382800E+00o
5 6 6 988482070E+02 911949500E+00
6 6 6 *90997336E+02 *12451500E+OO

ITERATION NUMBER 47

2 6 6 *39795a7oE+o2 .38565000E-01
3 6 6 96 5208166E+02 .70610000E-O1
4 6 6 -80505739E+02 .94267000E-ol
5 6 6 *8859O558E.O2 .10848800E+00
6 6 6 e91110385E+02 *11304900E+00

ITERATION NUMPER 48

2 6 6 *39830885E+Op o35015000E-01
3 6 6 *65272270'E+O2 *64104000E-01
4 6 6 *8O591321E+02 *85582OOOE-Ul
5 6 6 *88689Of4E+02 *98496000E-01
6 6 6 *91213024E+02 *10263900E+00

ITERATION NUMBER 49

2 6 6 939862671E+02 .31786000E-Ul
3 6 6 *6533O47oE+o2 058200000E-01
4 6 6 *80669023E+O2 .777020OOE-01
5 6 6 o88778474E+o2 089420000E-01
6 6 6 *91306204E+02 .93180000E-01

ITERATION NUMBER 50

2 6 6 o39891531E+02 o28860000E-01
3 6 6 *65383313E+02 *52843000E-01
4 6 6 e8073956SE.02 *70542000E-01
5 6. 6 *88859661E+02 *81187000OE-01
6 6 6 *91390804E+02 9846000OS-01

ITERATION NUMBER 51

2 6 6 *39917735E+02 *262040OOE-01
3 6 6 *65431285E+02 9479720OOE-01
4 6 6 *80803612E+02 *64047000E-o1
5 6 6 988933371E+02 *737100OOE-01
6 6 6 *91467613E+o2 7?68090OOE-01

ITERATION NUMBER 52
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2 6 6 9399415'23E+02 *23788000E-O1
3 6 6 965474840E+02 *43555000E-O1
4 6 6 *80861762E+02 *581500OOE-01
5 6 6 *89000295E+02 *66924000E-O1
6 6 6 *91537348E+02 *69735000E-O1

ITERATION NUMBER 53

2 6 6 o39963120E+02 *215970O0E-01
3 6 6 o65514382E+02 *39542000E-O1
4 6 6 *80914552E+02 *52790000E-O1
5 6 6 *89061050E+02 o60755000E-01
6 6 6 *91600660E402 *633120O0E-01

ITERATION NUMBER 54

2 6 6 *39982730E.02 *19610000E-O1
3 6 6 *65550283E+02 035901000E-01
4 6 6 *80962483E+02 *47931000E-01
5 6 6 *89116210E+02 o55160000F-01
6 6 6 e91658140E+02 *5748000OF-O1

ITERATION NUMBER 55

2 6 6 *4OOOO530E+O2 9178000OOE-01
3 6 6 *65582878E+02 *32595000E-U1
4 6 6 o81005999E+02 *41 16OOOE-01

5 6 6 *89166291E+02 950O81nor-01
6 6 6 991710325E+02 952185000E-01

ITERATION NUMBER 56

2 6 6 940016691E+02 *16161000E-O1
3 6 6 *65612470E+02 *29592000E-01
4 6 6 e81045506E+02 93950700OF-01
5 6 6 *89211.758E+02 @45467000E-01
6 6 6 *91757701E+02 *47376000E-O1

ITERATION NUMBER 57

2 6 6 940031366E+02 o14675000E-C1
3 6 6 965639336E+02 *26866000E-O1
4 6 6 *81081373E+02 *35867000E-O1
5 6 6 *89253O35E+O2 94127700OF-01f
6 6 6 *918OO718E+O2 *43017000E-O1
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ITERATION NUMBER 58

2 6 6 ,40044689E+02 ,13323000E-01
3 6 6 ,65663728E+02 *2439200OF-01
4 6 6 #81113936E+02 @325630O0E-01
5 6 6 989290513E+02 *37478000E-01
6 6 6 991839766E+02 *39048000E-01

ITERATION NUMBER 59

2 6 6 ,40056783E+02 *12094000E-01

3 6 6 *65685872E+02 ,22144000E-C1
4 6 6 *81143500E+02 929564000E-01
5 6 6 989324538E+02 *34025000E-01
6 6 6 991875226E+02 *3546UOOOE-01

ITERATION NUMBER 60

2 6 6 o40067765E+02 *10982000E-01
3 6 6 965705979E+02 *201070OOE-01
4 6 6 .81170341E+02 o26841000E-01
5 6 6 989355427E+02 ,30889000E-01
6 6 6 991907413E+02 *32187000E-01

ITERATION NUMBER 61

2 6 6 *40077734E+02 *99690000E-02
3 6 6 *65724733E+02 *18254000E-01
4 6 6 e81194713E+02 924372000E-01
5 6 6 *89383472E+02 *2904500OF-01
6 6 6 991936636E+02 *29223000E-01

ITERATION NUMBFR 62

2 6 6 *40086786E+02 990520000E-02
3 6 6 965740805E+02 *16572000E-01
4 6 6 *81216833E+02 *22120000E-01

5 6 6 o89408934E+02 e25462000E-01
6 6 6 *91963168E+02 *26532000E-01

ITERATION NUMBER 63

2 6 6 *40095003E+02 *82170000E-02
3 6 6 *6S755850E+02 ,15045000E-01
4 6 6 .81236911E+02 *20088000E-01
5 6 6 *89432052E 02 *23118000E-01
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6 6 6 991987258E+02 *24090000E-01

ITERATION NOMR 64

2 6 6 s40102464E+O2 *74610000E-02
3 6 6 *65769510E+02 ol3660OOE-01
4 6 6 *81255156E+02 918235000E-O1
5 6 6 989453039E+02 920987000E-01
6 6 6 *92009131E.02 e21873000E-O1

ITERATION N'UMBER 65

2 6 6 *40109237EP+02 967730000E-02
3 6 6 965781911E+02 *124010O0E-01
4 6 6 *81271717E+02 o16561000E-01
5 6 6 9894720~95E+02 919056OF~-01
6 6 6 *92028985E+O2 ol9854000F-O1

ITERATION NUMBER 66

2 6 6 *4O1153F7F+O2 e61500000E-02
3 6 6 .65793169E+02 #11258000E-O1
4 6 6 *81286745E.02 915028000E-01
5 6 6 o89489396E..02 9173010OOE-Ul
6 6 6 *92047015E+02 *180300GOE-O1

ITERATION NUMBER 67

2 6 6 .40120970E+02 o5583OOOOE-O2
3 6 6 *65803392E+02 Imr22!nonF-0j
4 6 6 *81300392E+02 *13647c00E-O1
5 6 6 *89505100E+02 910704000E-01
6 6 6 *92063380E+02 *16365000E-01

ITERATION NUMBER 68

2 6 6 *40126038E+O2 *50680000E-02
3 6 6 e65812672E+02 99280000OF-02
4 6 6 e81312784E+02 912392000E-01
5 6 6 *89519360E+02 *14260000E-01
6 6 6 *92078239E+02 9148590OOE-01

ITERATION NUMBER 69

2 6 6 940130640E+02 *46020000E-02

3 6 6 *65821096E+02 984240000E-02
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4 6 6 e81324033E+02 *11249000E-Cl
5 6 6 989532308E+02 912948000E-01
6 6 6 *92091727E+02 ol!4880OF-01

ITERATION NUMBER 70

*2 6 6 o40134818E+02 941780000E-02
3 6 6 *65828749E.02 976530000E-02
4 6 6 *81334246EL+02 910213000E-01
5 6 6 *89544059E.O2 .11751000E-01
6 6 6 *92103976E+02 e12249000E-O1

ITERATION NUMBER 71

2 6 6 *40138611E.02 o37930000E-02
3 6 6 *65835693E+02 *69440000E-02
4 6 6 *81343517E+02 *92710000E-02
5 6 6 *89554730E+02 *10671000E-01
6 6 6 *92115094E.02 *1111800OF-01

ITERATION NUMBER 72

2 6 6 e40142055E+02 *34440000E-02
3 6 6 *65841997E+02 *63U40000E-02
4 6 6 *81351936E+02 9841900OOE-02
5 6 6 @89564420E+02 9969000OOE-02
6 6 6 992125192E+02 ol0098000E-01

ITERATION NUMBER 73

2 6 6 *40145183E+02 931280000E-02
3 6 6 *65847723E+02 9572600O(OE-02
4 6 6 *81359579E.02 *7643000flE-O2
5 6 6 *89573216E.02 087960000E-02
6 6 6 *92134357E+02 *91650000E-02

ITERATION NUMBER 74

2 6 6 *40148021E+02 *28380000E-02
3 6 6 *65852923EeO2 9520COOOOE-02
4 6 6 *81366517E+02 969380000E-02
5 6 6 *89581199E.02 *79830000E.02
6 6 6 *92142679E+02 *83220000E-02

ITERATION NUMBER 75
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2 6 6 s40150599E.02 *25780000E-02
3 6 6 .65857640E+02 *471700OOE-02
4 6 6 *81372816E+02 *6299000()E-02
5 6 6 o89588450E+02 o7?510OO(E-O2
6 6 6 *92150230E+02 *7551000CE-02

ITERATION NUMBER 76

2 6 6 *40152938E+02 *23390000E-02
3 6 6 o65861925E.O2 *42850000E-02
4 6 6 .81378536E.02 o57200000E-02
5 6 6 989595029E+02 965790U00E-02
6 6 6 o92157088E+02 *68580000E-02

ITERATION NUMBER 77

2 6 6 *40155063E+02 92125C000E-02
3 6 6 965865812E+02 93887C000E-02
4 6 6 s81383728E.02 .51920000E-02
5 6 6 .89601005E+02 *59760P00E-02
6 6 6 .92163316E.02 *62?EOOOE-02

ITERATION NUMBER 78

2 6 6 s40156991E+02 .19?8Oc00OF-O2
3 6 6 965869343E+02 *35310000E-02
4 6 6 *81388442E.02 *4714000CE-02
5 6 6 *89606429E+02 *5424C000E-C2
6 6 6 *92168968E+02 o5652O0O0E-0)2

ITERATION NUMBER 79

2 6 6 *40158743E+02 *17520000E-02
3 6 6 o65872551E+02 *32080000E-02
4 6 6 *81392722E+02 *42800000E-02
5 6 6 *896113 9E+02 *49290000E-02
6 6 6 *92174101E+02 9513300OOE-02

ITERATION NUMBER 80

2 6 6 e4016032s1E+02 *1588C000E-02
3 6 6 965875463E+02 *29120000E-02
4 6 6 *81396610E+02 *38880OOE-02
5 6 6 o89615831E+02 *44730000E-)2
6 6 6 *92178763E+02 *4662O0OS-02
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FINAL RESULTS OF ITERATION

31" eniperature residuea
2 2 2 *11335533E+02 *18500000E-03
3 2 2 *16193666E+02 .33900000E-03
4 2 2 *18492290E+O2 *45?OOOOOE-O3
5 2 2 #19555513E+02 *52000000E-03
6 2 2 *19867755E.02 *543O0OOO-O3
2 3 2 *16193666E+O2 o33900000E-03
3 3 2 *24072778E.02 o618OOOOOE-O3
4 3 2 928065678E+02 e82800000E-C3
5 3 2 929976634E+02 *95?OOOOOE-03
6 3 2 030545704E+02 @99300(00OF-03
2 4 2 *1649.2290E+02 *453000OOE-03
3 4 2 *28065678E+02 *82800000E-03
4 4 2 933129558E+02 911070000E-02
5 4 2 *35615056E.02 *1273000C)E-02
6 4 2 936361747E+02 *13260000F-02
2 5 2 #19555513E+02 o52OOOOOOE-01
3 5 2 929976634E+02 o952OOOOOE-03
4 5 2 o35615056E.02 *12730000E-02
5 5 2 *38423278E+02 *14650000E-O2
6 5 2 *392751B1E+O2 *15240000E-02
2 6 2 *19867755L+02 *54300000E-03
3 6 2 930545704E+02 9993C0O0OE-03
4 6 2 *36363747E+02 ol3260OOO-O2
5 6 2 *39275131E+02 *15240000E-02
6 6 2 e40160331E+02 *15880000E-02
2 2 3 *16193666E+02 *33900000E-03
3 2 3 *24072778E.02 *61800000E-03
4 2 3 *28065678E+02 982800o00E-O3
5 2 3 929976634E+02 9957000OOE-03
6 2 3 *30545704E.02 99100000E-03
2 3 3 o24072779E+02 #61900000E-03
3 3 3 *37124431E+02 *11340000E-02
4 3 3 *44129680E+02 *15150000E.-02
5 3 3 *47560711E+02 ol7430OOO-O2
6 3 3 o48620848E+02 *18170000E-02
2 4 3 *28065678E+02 *828OOOOOE-03
3 4 3 *44129680E+02 915150000E-02
4 4 3 *53076940E+02 92024000DE-02
5 4 3 #57583003E+02 923290000E-02
6 4 3 *58954961E+02 *24250000E-02
2 5 3 929976634E+02 *95200000E-03
3 5 3 947580711E+02 *17430000E-02
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4 5 3 o57583003E+02 *2329C000E-02
5 5 3 o6?6862O5E+O2 o267600OO0E-02
6 5 3 o64249778E+02 *27950000E-02
2 6 3 o30545704E+02 @993000OOE-03
3 6 3 *48620848E+02 *1817000CE-02
4 .-6 3 o58954961E+02 *24250000E-02
5 6 3 *64249778E+02 o27950ThOOE-O2
6 6 3 *65875463E+02 *29120000E-02
2 2 4 *18492289E+02 *45200000E-01
3 2 4 *28065678E.02 .8?8oonOOE-01
4 2 4 *33129558E.02 *11070000E-02
5 2 4 o35615O0e6E+O2 *12730000E-02
6 2 4 *36363747E+O2 o13260000E-02
2 3 4 .28065678E-02 *828000OOE-03
3 3 4 944129680E+02 9151500OOE-02
4 3 4 953076940E+02 o20240000E-02
5 3 4 *57583003E+02 *23290000E-02
6 3 4 *58954961E+02 *2425000OE-02
2 4 4 *3312955SE.02 o]1070000E-02
3 4 4 .53076940E+02 *20240000E-02
4 4 4 *64567954E+02 *27030000E-02
5 4 4 *70471552E+02 *3111000OF-02
6 4 4 *72285538E+02 9323900O0E-02
2 5 4 *35615056E+02 912730000E-02
3 5 4 .57583003E+02 *23290000E-02
4 5 4 9704715S2E+02 *31110000F-0O?
5 5 4 977171912E+02 *35810000F-02
6 5 4 *79242543E+02 937110000E-02
2 6 4 936363747E+02 .13?60000E-02
3 6 4 *58954961E+02 *24250000F-02
4 6 4 *72285538E+02 o32390000E-02
5 6 4 *7924,2543E.O2 937110000E-02
6 6 4 *81396610E+02 *38880000E-02
2 2 5 *19555513E.02 o523OOOOOE-01
3 2 5 *29976634E+02 *95100000E-03
4 2 5 *35615056E.02 *12730000E-02
5 2 5 *38423278E*02 *14650000E-O?
6 2 5 *39275131E.02 *1524GOOOE-02
2 3 5 *29976634E+02 *95100000E-01
3 3 5 o47580711E+02 917430000F-02
4 3 5 *57583003E+02 *23290000E-02
5 3 5 *62686205E+02 *26780000E-02
6 3 5 *64249778E+02 *27950000E-02
2 4. 5 *35615056E*02 *1273000OE-02
3 4 5 o57583003E+02 *23290000E-02
4 4 5 *70471552E.02 93111000OF-02
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5 4 5 977171912E+02 *35810O00OF-2
6 4 5 *79242543E+02 *3731J000E-02
2 5 5 *38423278E+02 *14650000E-O?
3 5 5 *62686205E+02 *2678Z~00E-02
4 5 5 977171912E+02 o35810000E-02
5 5 5 *84787288E+02 94122D000E-02
6 5 5 *87153425E.02 *42930000E-02
2 6 5 *39275131E+02 *15240000E-02
3 6 5 *64249778E+02 .27950000F-02
4 6 5 979242543E+02 o37310000E-02
5 6 5 987153425E+02 *42910000E-02
6 6 5 *89615831E.02 *44733000E-02
2 2 6 ol9867755E+02 *54100000E-01
3 2 6 *30545704E+02 o993UC00OE-C)3
4 2 6 *36363747E+02 IP1326C000E-02
5 2. 6 *39275131E.02 *15240000E-O2
6 2 6 *40160331E.02 o15880000F-02
2 3 6 *30545704E+02 *9930C000E-03
3 3 6 o48620848E.02 918170000E-02
4 3 6 *58954961E.02 *24250000E-02
5 3 6 964249778E+02 o279500O0E-O?
6 3 6 *6587546'3E+02 *29120000E-O2
2 4 6 936363747E+02 *13260000E-02
3 4 6 *58954961E.02 *24250000F-02
4 4 6 9722855'38E+02 o32'390000F-02
5 4 6 o79242543E+02 9373130OOE-02
6 4 6 *81396610E.02 93888D000E-02
2 5 6 *39275131E+02 *1524OOO0F-02
3 5 6 *64249778E+02 *2795U.OOOE-02
4 5 6 *79242543E+02 *373100O0E-02
5 5 6 *87153425E+02 *42930000E-02
6 5 6 989615831E+02 944730000F-02
2 6 6 *40160331E+02 *15880000E'-02
3 6 6 *65875463E.02 929120000E-02
4 6 6 @81306610E+02 e38880000E-02
5 6 6 *89615831E.02 94473000OF-02
6 6 6 *92178763E+02 *466200OOE-02

DIFrUSIVITY 1.0000 CONDUCTIVITY 1.0000
DELTA TIME .2000 SOURCE STRENGTHt 2000.0000

XGRIDs .1000 YGRID= .1000 ZGRIDw .1000
MAX TIME *2000STOP WHEN ABSDIFF- *5OOOOOOOE-02 IS ZERO OR LESS

OUTPUT CONITROL.S ARE IRITE 1 JRITE 1
KRITE 1 KITER 6 JITER 6 CHOSE 0.000
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DATA R t N REGUILAR WEGSTEIN -- T - 0.2 SEC. GRIDS EQUAL AT 0.1 CM

NEW TI iE INCREMENT .200

ITERATION NUMBER 1

NODE TEMPERATURE RES I DUAL SLOPE

2 6 6 .49352900E+01 .49352900E+01
3 6 6 .61509471E+ol .61509471E+014 f 6 .64493826E+01 .64493826E+01
5 6 6 .65222818E+O1 .65222818E+O1
6 6 6 .65399740E+01 .65399740E+01

ITERATION NUMBER 2

2 6 6 .88801862E+01 .39448962E+01
3 6 6 ,11733575E+02 .55826280E+01
4 6 6 .12595459E+02 .61460770E+01
5 6 6 .12844798E+02 .63225170E+01
6 6 6 .12909294E+02 .63693200E+01

ITERATION NUMBER 3

2 6 6 .12185228E+02 .33050420E+01
3 6 6 .16783346E+02 .50497710E+01
4 6 6 .18385662E+02 .57902030E+01
5 6 6 .18910285E+02 .60654870E+01
6 6 6 .19052105E+02 .61428110E+01

ITERATI0N NUMBER 4

2 6 6 .15032849E+02 .28476210E+o1
3 6 6 .21351303E+02 .45679570E+O1
4 6 6 .23794226E+02 .54085640E+ol
5 6 6 .24671974E+02 .57616890E+O1
6 6 6 .2491681.9E+O2 .58647140E+01

ITERATION NUMBER 5

2 6 6 .17527906E.02 .24950570E+01
3 6 6 :25486291E.02 .41349880E+01
4 6 6 .28814165E+02 .50199390E+01
5 6 6 .30098025E+02 .54260510E+01
6 6 6 .30464459E+02 .55476400E+01

ITERATION NUMBER 6

2 6 6 .19736819E+02 .22089130E+01
3 6 6 .29231800E+02 .37455090E+01
. 6 6 .33450971E,02 .46368060E+01
5 6 6 .35171236E+02 .507321 OE+01
6 6 6 .35670706E+02 .52062470E+01
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ITERATION NUMBER 7

2 6 6 .21705484E 02 .19686650E+01
3 6 6 .32626222E+02 .33944220E+01
4 6 6 .37718101E+02 .42671300E+O1
5 6 6 ,39886695E+02 .47154590E+01
6 6 6 *40524592E+02 .48538860E+01

ITERATION NUMBER 8

2 6 6 .23467933E+02 .17624490E+01
3 6 6 .35703599E+02 .30773770E+01
4 6 6 .41633842E 02 .391574OE+O1
.S 6 6 .44248880E+02 .43621850E+01
6 6 6 .45025903E+02 .450131 OE+O1

ITERATION NUMBER 9

2 6 6 .25050775E+02 .15828420E+01
3 6 6 .38494323E 02 .27907240E+0I
4 6 6 .45219152E+02 .35853100E+01
5 6 6 .48268970E+02 .40200900E+01
6 6 6 *49182403E+02 .41565000E+01

ITERATION NUMBER 10

2 6 6 .26475626E.02 ,14248510E+01
3 6 6 .41025641E+02 ,25313180E+01
4 6 6 o48496204E.02 .32770520E+01
5 6 6 ,51962594E.02 .36936240E+01
6 6 6 ,53007382E.02 ,38249790E+01

ITERATION NUMBER 11

2 6 6 ,27760516E+02 .12848900E+01
.1 6 6 ,43322061E+02 ,22964200E+O1
4 6 6 .5 1473894E,02 .2991 900E+O1
5 6 6 ,55348087E+02 ,33854930E+01
6 6 6 .56517688E-02 .35103060E+O1

ITERATION NUMBER 12

ITERATION NUMBER 13

2 6 6 .44852152E02 101 0451E+02
3 6 6 .86393980E.02 .23417471E+02
4. 6 6 *78428443E+02 .15310434E4.02
5 6 6 .73398767E+02 .10540817E+02
6 6 6 :70871016E.02 .89507020E+01



GAAhys/6'3-f3

ITERATION NUMBER 14

2 6 6 .51368571E+02 .65164190E+01
3 6 6 .85345189E+02-.10487910E+O1
4 6 6 .83703602E+02 .52751590E+01
5 6 6 .80649055E 02 .72502880E+01
6 6 6 ,79693043E+02 .88220270E+01

ITERATION NUMBER 15

2 6 6 .51339767E.02-.28804000E-01
3 6 6 .77532625E+02-.78125640E+01
4 6 6 .84251769E 02 .54816700E+00
5 6 6 .85209332E+02 .45602770E+01
6 6 6 .85549536E 02 .58564930E 01

ITERATION NUMBER 16

2 6 6 .47631880E+02-.37078870E+01
3 6 6 *74328679E+02-.32039460E+01
4 6 6 .84750529E+02 .49876000E+00
5 6 6 .88309144E02 .30998120E+01
6 6 6 .89347939E 02 .37984030E+01

ITERATION NNUMBER 17

2 6 6 .45810482E+02-o18213980E+01
, 6 6 .72268586E 02-.20600930E 01
4 6 6 .84915766E.02 .16523700E+00
5 6 6 *90204296E02 .18951520E+01
6 6 6 *91824796E+02 .24768570E+01

ITERATION NUMBER 18

.,1 6 6-.1341 200E+03-.20638058E+03 .99188337E+00

ITERATION NUMBER 19

2 6 6 .85797480E.01-.35130178E+02
3 6 6 .46369107E+02 .180481 OE+03
4 6 6 .75833670E 02 .25041713E+02
5 6 6 .88148656E+02 .24035820E+01
6 6 6 .89534468E+02-.10191980E+01

ITERATION NUMBER 20

2 6 6 .34557193E 02 .25977445E+02
3 6 6 .51224439E.02 .48553320E01
4 6 6 .749693i34E.02-.86428600E.oo
5 6 6 .86551262E 02-.I5973940E+ol
6 6 6 .89934059E+02 .3959100E+00
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ITERATION NUMBER 21

2 6 6 .3367410IE+02-.88309200E+OO
, 6 6 .59306274E 02 .80818350E+O1
4 6 6 *77646077E+02 .26766930E+O1
5 6 6 ,87125141E+02 ,57387900E+O0
6 6 6 ,89126491E 02-.50756800E+O0

ITERATION NUMBER 22

2 6 6 ,37124091E+02 .34499900E+O1
3 6 6 *61684080E 02 ,23778060E+O1
4 6 6 .78234057E 02 .58798000E+O0
5 6 6 .86822557E+02--.30258400E+OO
6 6 6 *89560956E.02 .13446500E+00

ITERATION NUMBER 23

2 6 6 *37850149E+02 .72605800E+OO
3 6 6 ,62959q550E+02 .12754700E+O1
4 6 6 .787O857E+02 .46680000E+OO
5 6 6 *87051002E+02 ,22844500E+O0
6 6 6 *89524159E+02-,36797000E-01

ITERATION NUMBER 24

3 6 6 .67402930E.02 .44433800E+O1 ,77697084E+O0

ITERATION NUMBER 25

2 6 6 *39712428E.02 ,10285740E+O1
3 6 6 .6482716OE. 02-.25757700E+O1
4 6 6 *79679853E.02-.870630OOE-O1
5 6 6 *87572706E+02 .24242500E+00
6 6 6 .90034450E.02 .25863100E+O0

ITERATION NUMBER 26

2 6 6 .394749. 9E.O2-.23745900E+00
.3 6 6 .64796037E+02-.31 23000E-01
4 6 6 .79854291 E+02 .17443800E+00
5 6 6 *87786705E+02 .21 39900E+00
6 6 6 .*90260794E+02 :226344.00E+00

ITERATION NUMBER 27

2 6 6 .39567337E+02 *923680M0E-01
3 6 6 .64803561E,+02 *2400OOE-02
4 66 *79.942841E+02 *4550000E-01

5 6 6 . 7940229E+02 .15352400E.00,5 .



6 6 6 9041#3049E+02 ,18225500E+OO

ITERATION NUMBER 28

2 6 6 *39596002E+02 .286650OOE-01
3 6 6 .64865914E+02 .623530OOE-01
4 6 6 ,80058366E+02 ,1 552500E+00
5 6 6 .88090688E+02 ,15045900E+00
6 6 6 ,90593803E+02 ,15075400E+00

ITERATI0N NUMBER 29

2 6 6 .39644080E+02 o48078000E-01
3 6 6 .64943841E+02 *779270OOE-01
4 6 6 *8017()791E+02 *1 242500E+00
5 6 6 *88221417E+02 .13072900E+00
6 6 6 .90733244E+02 .13944100E+00

ITERATION NUMBER 30

6 6 6 lol74g9bOE+03 ,11015860E+02 .98750008E+00

ITERATION NUMBER 31

2 6 6 40534931E+02 *4976010OE+0O
3 6 6 .65530987E+02 .333604OOE+00
4 6 6 .80543187E+02 .20694300E+O0
5 6 6 .90331534E+02 .19631770E+01
6 6 6 .91917293E+02-.98318100E+01

ITERATION NUMBER 32

2 6 6 .40449083E+02-.858480OOE-01
3 6 6 .6560R256E.02 o772690OOE-01
4 6 6 .80981496E+02 .438309OOE+0O
5 6 6 *89076081E+02-.12554530E+01
6 6 6 .92268235E 02 .35094200E+00

ITERATION NUMBER 33

2 6 6 *40187156E+02-.26192700E+OO
3 6 6 .65619279E+02 .110230OOE-O1
4 6 6 i80895394E+02-. 861020OOE-o1
5 6 6 .89281976E02 .20589500Eo
6 6 6 .917,7795E+o2-.5204400oE00

ITERATION NUMBER 34

2 6 6 *40113039E.02-.74117000E-O1
3 6 6 .65607579E+02-.1 7000OOE-o1
4 6 6 ,81012387E+02 .1 69300E-o
5 6 6 .89179240E.02-.10273600E.OO
6 6 6 .91798949E+02 .51 54000E-01
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ITERATION NUMBER 35

2 6 6 .4006 9229E+02-.43810000E-O1
3 6 6 ,65632031E+02 .24452000E-01
4 6 6 ,81031 34E+02 ,18747000E-ni
.S 6 6 ,89235540E+02 .56300000E-01
6 6 6 ,91775925E+02-,230240OOE-01

ITERATION NUMBER 36

2 6 6 ,40047945E+02-.212840OOE-Ol .32695731E+00
3 6 6 ,65659270E+02 .27239000E-01 .52699165E+00
5 6 6 .89292)20E+02 .56580000E-01 .50126110E+O0

ITERATION NUMBER .37

2 6 6 ,40055292E.02 .7347OOOE-O2
3 6 6 .65676297E+O2 .170270OOE-01
4 6 6 81134991E+02 .1O7800OE-01
5 6 6 .89314418E+02 .22298000E-01
6 6 6 ,91870999E+02 .39107000E-01

ITERATION NUMBER 38

2 6 6 .40065759E+02 ,104670OOE-01
3 6 6 ,65700144E+02 .238470OOE-01
4 6 6 ,81160295E+02 .25304000E-01
5 6 6 .89347487E+02 .330690OOE-01
6 6 6 o91898458E+02 .274590OOE-01

ITERATION NUMBER 39

2 6 6 *40075656E+02 .9897OOOE-02
.3 6 6 ,65718252E+02 ,18108000E-01
4 6 6 ,81186919E+02 .26624000E-015 6 6 .89374843E+02 .27356000E-016 6 6 91928420E+02 ,29962000E-01

ITERATION NUMBER 40

2 6 6 ,40084553E+.02 ,88970000E-02
5 6 6 .65735925E+02 .176730OOE-01
4 6 6 81209764E02 .228SOOE-o1
5 6 6 .89401222E.02 .2637900E-O1
6 6 6 .91955065E+02 .266450ooE-O1

ITERATION NUMBER 41

* 2 6 6 .40092966E.02 .841300ooE-02
3 6 6 .65751456E.02 .155310OOE-01
4 6 6 .81230797E 02 .210330OOE-01
5 6 6 .89424951E0 2.o. 7290OOE-O1
6 6 6 .91979914E+02 .24490OOE-O1

log.
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ITERATION NUMBER 42

2 6 6 .40664700E 02 .57173400E+00 .98549863E+00

ITERATION NUMBER 43

2 6 6 ,40155975E+02-.50872500E+O0
3 6 6 .65941433E+02 ,81778000E-01
4 6 6 .81918920E+02 ,23045200E+00
5 6 6 .90107529E+02 .32909000E+00
6 6 6 .92504389E 02 .33788200E+00

ITERATION NUMBER 44

2 6 6 .409271OE.02 ,36735000E-O1
3 6 6 ,66048172E+02 .10673900E+O0
4 6 6 .8-1743366E+02-.17555400E+00
5 6 .' .90085776E+02-,21753000E-01
6 6 6 ,92657030E+02 .15264100E+00

ITERATION NUMBER 45

2 6 6 .40202726E+02 .10016000E-01
3 6 6 .660183.33E+02-.29839000E-01
4 6 6 ,81726789E.+02-.16577000E-01
5 6 6 .90038601E.+02-,47175000E-01
6 6 6 ,92623301E+02-,33729000E-O1

ITERATION NUMBER 46

2 6 6 ,40206900E+02 .41740000E-02
3 6 6 .66031618E 02 .13285000E-01
4 6 6 ,81677748E.02-,49041000E-O1
5 6 6 .89980809.E+02-.57792000E-01
6 6 6 .92571394E+02-.51907000E-O1

ITERATION NUMBER 47

2 6 6 .40216700E+02 .98000000E-02
3 6 6 *66020183E.02-.11435000E-O1
4 6 6 *81643890E+02-.33858000E-O1
5 6 6 .89934384E+02 .46425000E-01
6 6 6 .92519805E+02-.51589000E-0

ITERATION NUMBER 48

2 6 6 40218714E+02 .20140000E-02 .17061224E+00
3 6 6 .65997780E,02-.22403000E-01 .66200262E+00

100.



ITERATION NUMBER 49

2 6 6 .4021?I37E+02-,157700ooE-02
3 6 6 .65992337E+02-.54430OOE-02
4 it 6 .8 153si84E.02-.58I734000E-0I
5 6 6 .898(07301E+02-.66910000E-0I
6 6 6 .92404153E+02-.628830OOE-01

* ITERATI0W4 NUMBER 50

2 6 6 .40214339E.02-,27980000E-02
1 6 6 .65964920E.02-.27417000E-01

4 6 6 .81505052E+02-.30I32000E-0I
5 6 6 .89769072E+02-.38229000E-01
6 6 6 .92352080E.02-,52073000E-01

ITERATION NUMBER 51

2 6.6 4020S37/8E+02-.8q610()00E-02
34 6 6 .6594997RE.O2-.149420oOE-01
4 6 6 .815(00347E.O2-.47O500OOE-02
s 6 6 .89751201E.02-.178710OOE-01

6 6 *92324220E+02-.27860000E-01

ITERATION NUMBER 52

2 6 6 .40199461E+02-.59170000E-02
3 6 6 .65945630E.02-.43480000E-02

4 6 6 .81494320E+02-.60270000E-02
5 6 6 .89736533E.02-.14668000E-01
1; 6 6 q92308033E+02-.W687000E-0I

ITERATION NUMBER .53

2 6 6 .40196567E+02-.2894o~OOE-02
3 6 6 .6594;553E.02-.407700ooE-02
4 6 6 .8 14882.75E+02-.6o450000E-02
5S 6 6 .89726712E.02-.982100O0E-02
6 6 6 *9229586IE+02-.i2I72000E-0I

ITERATION NUMBER .54

*4 6 6 .81432630E+02-*55645OOE-01 .90190239E+0o

ITERATION NUMBER 55

2 6 6 .401119914E+02-.233600O0E-02
3 6 6 .65925560E+02-.1 80l0ooE-01
4 6 6 .81468953E+02 .36323000E-01
5 6 6 .89694835E+02-.56250060E-02
6 6 6 .92262128iE.02-.15831000E-O1
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ITERATION NUMBER 56

2 ; 6 .40188478E+02-,14360000E-O2
3 1; 6 *65928388E+02 .282800OOE-02
4 6 6 .81463657E 02-.52960000E-O2
5 6 6 .89693365E 02-.14700000E-O2
6 6 6 .92258601E+02-.352700O0E-O2

ITERATION NUMBER 57

2 6 6 ,40187951E+02-.52700OOOE-O3
3 6 6 ,65925081E+02-.33070000E-02
4 6 6 .81402624E.02-.10330000E-02
5 6 6 .89690499E 02-.2866000OE-02
6 6 6 .92256453E+02-.21480000E-02

ITERATION NUMBER 58

2 6 6 .40186625E 02-.l3260000E-02
3 6 6 .65923581E 02-. 150000E-02
4 6 6 ,81459925E+02-.26990000E-02
5 6 6 .89688134E+02-.23650000E-02
6 6 6 .92253860E+02-.25930000E-02

FINAl. RESULTS OF ITERATION

2 2 2 .1 338654E+02
4 2 2 .18499369E+02
6 2 2 ,19876607E 02
2 6 2 .)9876652E+02
4 6 2 .36385764E 02
6 6 2 .4186622E+02
2 2 6 .19876605E+02
4 2 6 ,36385683E+02
6 2 6 .40186572E 02
2 6 6 ,40186625E 02
4 6 6 .81459925E+02
6 6 .6 .92253860E 02

DIFFUS IVITY I.0000 CONDIJCTIVITY 1.0000
DELTA TIME .2000 SOURCE STRENGTH 2000.0000

E
XGR I) 1 OX) YGRID, 11000 ZGRID- .1000
MAX TI tiE .2000STOP WHEN ABSDIFF- .005001S ZERO OR LESS

OUTPUT CONTRI.S ARE IRITE 2 JRITE 4
KRITE . KITER 6 JITER 6
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